1
|
Yuan W, Jiao K, Yuan H, Sun H, Lim EG, Mitrovic I, Duan S, Cong S, Yong R, Li F, Song P. Metal-Organic Frameworks/Heterojunction Structures for Surface-Enhanced Raman Scattering with Enhanced Sensitivity and Tailorability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26374-26385. [PMID: 38716706 PMCID: PMC11129117 DOI: 10.1021/acsami.4c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/24/2024]
Abstract
Metal-organic frameworks (MOFs), which are composed of crystalline microporous materials with metal ions, have gained considerable interest as promising substrate materials for surface-enhanced Raman scattering (SERS) detection via charge transfer. Research on MOF-based SERS substrates has advanced rapidly because of the MOFs' excellent structural tunability, functionalizable pore interiors, and ultrahigh surface-to-volume ratios. Compared with traditional noble metal SERS plasmons, MOFs exhibit better biocompatibility, ease of operation, and tailorability. However, MOFs cannot produce a sufficient limit of detection (LOD) for ultrasensitive detection, and therefore, developing an ultrasensitive MOF-based SERS substrate is imperative. To the best of our knowledge, this is the first study to develop an MOFs/heterojunction structure as an SERS enhancing material. We report an in situ ZIF-67/Co(OH)2 heterojunction-based nanocellulose paper (nanopaper) plate (in situ ZIF-67 nanoplate) as a device with an LOD of 0.98 nmol/L for Rhodamine 6G and a Raman enhancement of 1.43 × 107, which is 100 times better than that of the pure ZIF-67-based SERS substrate. Further, we extend this structure to other types of MOFs and develop an in situ HKUST-1 nanoplate (with HKUST-1/Cu(OH)2). In addition, we demonstrate that the formation of heterojunctions facilitates efficient photoinduced charge transfer for SERS detection by applying the Mx(OH)y-assisted (where M = Co, Cu, or other metals) MOFs/heterojunction structure. Finally, we successfully demonstrate the application of medicine screening on our nanoplates, specifically for omeprazole. The nanoplates we developed still maintain the tailorability of MOFs and perform high anti-interference ability. Our approach provides customizing options for MOF-based SERS detection, catering to diverse possibilities in future research and applications.
Collapse
Affiliation(s)
- Wenwen Yuan
- School
of Advanced Technology, Xi’an Jiaotong
- Liverpool University, Suzhou 215123, China
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 7ZX, U.K.
- State
Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Keran Jiao
- School
of Advanced Technology, Xi’an Jiaotong
- Liverpool University, Suzhou 215123, China
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 7ZX, U.K.
| | - Hang Yuan
- School
of Advanced Technology, Xi’an Jiaotong
- Liverpool University, Suzhou 215123, China
| | - Hongzhao Sun
- School
of Physical Science and Technology, Suzhou
University of Science and Technology, Suzhou 215009, China
| | - Eng Gee Lim
- School
of Advanced Technology, Xi’an Jiaotong
- Liverpool University, Suzhou 215123, China
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 7ZX, U.K.
| | - Ivona Mitrovic
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 7ZX, U.K.
| | - Sixuan Duan
- School
of Advanced Technology, Xi’an Jiaotong
- Liverpool University, Suzhou 215123, China
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 7ZX, U.K.
- Key
Laboratory of Bionic Engineering, Jilin
University, Changchun 130022, China
| | - Shan Cong
- School of
Nano-Tech and Nano-Bionics, University of
Science and Technology of China, Suzhou 215123, China
| | - Ruiqi Yong
- School
of Advanced Technology, Xi’an Jiaotong
- Liverpool University, Suzhou 215123, China
| | - Feifan Li
- School of
Nano-Tech and Nano-Bionics, University of
Science and Technology of China, Suzhou 215123, China
| | - Pengfei Song
- School
of Advanced Technology, Xi’an Jiaotong
- Liverpool University, Suzhou 215123, China
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 7ZX, U.K.
| |
Collapse
|
2
|
Habibi B, Pashazadeh S, Pashazadeh A, Saghatforoush LA. An amplified electrochemical sensor employing one-step synthesized nickel-copper-zinc ferrite/carboxymethyl cellulose/graphene oxide nanosheets composite for sensitive analysis of omeprazole. RSC Adv 2023; 13:29931-29943. [PMID: 37860173 PMCID: PMC10582824 DOI: 10.1039/d3ra04766k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
In this work, a signal amplification strategy was designed by the fabrication of a highly sensitive and selective electrochemical sensor based on nickel-copper-zinc ferrite (Ni0.4Cu0.2Zn0.4Fe2O4)/carboxymethyl cellulose (CMC)/graphene oxide nanosheets (GONs) composite modified glassy carbon electrode (GCE) for determination of omeprazole (OMP). The one-step synthesized Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs nanocomposite was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy and X-ray diffraction techniques. Then, the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE was applied to study the electrochemical behavior of the OMP. Electrochemical data show that the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE exhibits superior electrocatalytic performance on the oxidation of OMP compared with bare GCE, GONs/GCE, CMC/GONs/GCE and MFe2O4/GCE (M = Cu, Ni and Zn including single, double and triple of metals) which can be attributed to the synergistic effects of the nanocomposite components, outstanding electrical properties of Ni0.4Cu0.2Zn0.4Fe2O4 and high conductivity of CMC/GONs as well as the further electron transport action of the nanocomposite. Under optimal conditions, the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE offers a high performance toward the electrodetermination of OMP with the wide linear-range responses (0.24-5 and 5-75 μM), lower detection limit (0.22 ± 0.05 μM), high sensitivity (1.1543 μA μM-1 cm-2), long-term signal stability and reproducibility (RSD = 2.54%). It should be noted that the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE sensor could also be used for determination of OMP in drug and biological samples, indicating its feasibility for real analysis.
Collapse
Affiliation(s)
- Biuck Habibi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452135
| | - Sara Pashazadeh
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452135
| | - Ali Pashazadeh
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452135
| | | |
Collapse
|
3
|
Technological advances and challenges for exploring attribute transmission in tablet development by high shear wet granulation. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
4
|
In-situ monitoring of cyclic olefin ring-opening metathesis polymerization by Raman spectroscopy: An effective tool for functional polymer and copolymer design. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Liu B, Wang J, Zeng J, Zhao L, Wang Y, Feng Y, Du R. A review of high shear wet granulation for better process understanding, control and product development. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.11.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
El-Kimary EI, Ragab MAA. Recent Analytical Methodologies for the Determination of Omeprazole and/or Its Active Isomer Esomeprazole in Different Matrices: A Critical Review. Crit Rev Anal Chem 2020; 52:106-130. [DOI: 10.1080/10408347.2020.1791042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Eman I. El-Kimary
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Marwa A. A. Ragab
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| |
Collapse
|
7
|
The development and validation of a quality by design based process analytical tool for the inline quantification of Ramipril during hot-melt extrusion. Int J Pharm 2020; 584:119382. [DOI: 10.1016/j.ijpharm.2020.119382] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 11/24/2022]
|
8
|
Ali S, Riaz A, Nawaz H, Majeed MI, Iqbal MA, Bhatti HN, Rashid N, Kashif M, Tahir M, Nasir S, Ullah S, Farooq S, Naseem A. Raman spectral characterization of silver metal-based complexes of different benzimidazolium ligands. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 232:118162. [PMID: 32106031 DOI: 10.1016/j.saa.2020.118162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
In this study, Raman spectroscopy has been employed for the characterization of two structurally different monodentate N-heterocyclic carbene ligands (ligand-1 and ligand-2) and their respective complexes (complex-1 and complex-2). The Raman spectral features are found helpful for the confirmation of formation of complexes. The significant Raman spectral features are identified for benzimidazole ring with higher intensities in carbene complexes having more polarizability as compared to their ligands, providing the evidence for the formation of coordinate covalent bond. The successful complexation is further supported by using multivariate data analysis technique, Principal Component Analysis (PCA), which is found very helpful to highlight the variability of Raman spectral data of both ligands and their respective metal complexes from each other. Moreover, the coordination of carbene with Ag(I) is confirmed from the dominant spectral markers of higher intensities at 359 cm-1 in complex-1 and 338 cm-1 in complex-2. The effective and reliable characterization and confirmation of metal complexes indicates the potential of Raman spectroscopy for its use for the characterization of the organometallic complexes and other chemical products.
Collapse
Affiliation(s)
- Saqib Ali
- Department of Chemistry, University of Agriculture Faisalabad-38040, Pakistan
| | - Ayesha Riaz
- Department of Chemistry, University of Agriculture Faisalabad-38040, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad-38040, Pakistan.
| | | | | | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture Faisalabad-38040, Pakistan
| | - Nosheen Rashid
- Department of Chemistry, University of Central Punjab, Faisalabad campus, Faisalabad, Pakistan
| | - Muhammad Kashif
- Department of Chemistry, University of Agriculture Faisalabad-38040, Pakistan
| | - Muhammad Tahir
- Department of Chemistry, University of Agriculture Faisalabad-38040, Pakistan
| | - Saira Nasir
- Department of Chemistry, University of Agriculture Faisalabad-38040, Pakistan
| | - Saif Ullah
- Department of Chemistry, University of Agriculture Faisalabad-38040, Pakistan
| | - Sidra Farooq
- Department of Chemistry, University of Agriculture Faisalabad-38040, Pakistan
| | - Ammara Naseem
- Department of Chemistry, University of Agriculture Faisalabad-38040, Pakistan
| |
Collapse
|
9
|
Ali S, Riaz A, Majeed MI, Iqbal MA, Bhatti HN, Rashid N, Kashif M, Tahir M, Nasir S, Farooq S, Naseem A, Nawaz H. Raman spectroscopy along with Principal Component Analysis for the confirmation of Silver(I)-N-heterocyclic carbene complex formation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117851. [PMID: 31786050 DOI: 10.1016/j.saa.2019.117851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
In this study Raman spectroscopy is employed for the characterization of two different ligands called as S1 and S2 and their respective co-ordinate complexes called C1 and C2. Specific Raman spectral signatures are observed for each of these Silver(I)-N-heterocyclic carbene complexes Ag(I)-(NHCs), which can be associated with the imidazolium ring, part of both of the ligands, indicating the formation of new coordinate covalent bond. For the detailed analysis, Raman spectral data of these ligands and complexes is analyzed by multivariate data analysis technique, Principal Component Analysis (PCA) which is found very helpful to differentiate two ligands and complexes from each other. The significant Raman peaks with higher intensities in the complexes as compared to the respective ligands are associated with imidazole ring which can be attributed to the enhanced polarizability of this ring on complex formation. Moreover, the spectral features associated with (AgC) bond are observed with higher intensity at 360 in (C1) and 383 in (C2). This study indicates the potential of Raman spectroscopy for the characterization and confirmation of formation of organometallic complexes and other chemical products.
Collapse
Affiliation(s)
- Saqib Ali
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
| | - Ayesha Riaz
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
| | | | | | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
| | - Nosheen Rashid
- Department of Chemistry, University of Central Punjab, Faisalabad Campus, Faisalabad, Pakistan
| | - Muhammad Kashif
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
| | - Muhammad Tahir
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
| | - Saira Nasir
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
| | - Sidra Farooq
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
| | - Ammara Naseem
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan.
| |
Collapse
|
10
|
Legner R, Wirtz A, Koza T, Tetzlaff T, Nickisch-Hartfiel A, Jaeger M. Application of green analytical chemistry to a green chemistry process: Magnetic resonance and Raman spectroscopic process monitoring of continuous ethanolic fermentation. Biotechnol Bioeng 2019; 116:2874-2883. [PMID: 31286482 DOI: 10.1002/bit.27112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/29/2022]
Abstract
Compact 1 H NMR and Raman spectrometers were used for real-time process monitoring of alcoholic fermentation in a continuous flow reactor. Yeast cells catalyzing the sucrose conversion were immobilized in alginate beads floating in the reactor. The spectrometers proved to be robust and could be easily attached to the reaction apparatus. As environmentally friendly analysis methods, 1 H NMR and Raman spectroscopy were selected to match the resource- and energy-saving process. Analyses took only a few seconds to minutes compared to chromatographic procedures and were, therefore, suitable for real-time control realized as a feedback loop. Both compact spectrometers were successfully implemented online. Raman spectroscopy allowed for faster spectral acquisition and higher quantitative precision, NMR yielded more resolved signals thus higher specificity. By using the software Matlab for automated data loading and processing, relevant parameters such as the ethanol, glycerol, and sugar content could be easily obtained. The subsequent multivariate data analysis using partial linear least-squares regression type 2 enabled the quantitative monitoring of all reactants within a single model in real time.
Collapse
Affiliation(s)
- Robin Legner
- Niederrhein University of Applied Sciences, Frankenring, Krefeld, Germany.,University Duisburg-Essen, Universitaetsstraße, Essen, Germany
| | - Alexander Wirtz
- Niederrhein University of Applied Sciences, Frankenring, Krefeld, Germany
| | - Tim Koza
- Niederrhein University of Applied Sciences, Frankenring, Krefeld, Germany
| | - Till Tetzlaff
- Niederrhein University of Applied Sciences, Frankenring, Krefeld, Germany
| | | | - Martin Jaeger
- Niederrhein University of Applied Sciences, Frankenring, Krefeld, Germany
| |
Collapse
|
11
|
Makki AA, Bonnier F, Respaud R, Chtara F, Tfayli A, Tauber C, Bertrand D, Byrne HJ, Mohammed E, Chourpa I. Qualitative and quantitative analysis of therapeutic solutions using Raman and infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 218:97-108. [PMID: 30954803 DOI: 10.1016/j.saa.2019.03.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/06/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
Anticancer drugs are prescribed and administrated to an increasing number of patients on a daily basis. As a consequence, a number of concerns have been raised about the patient health and safety in the case that the drugs administered are not at the required concentration or even worse not the correct ones. Quality control of therapeutic solutions has therefore been extensively implemented in hospital environments, in order to avoid any failure in the intense workflow faced by administering pharmacists. In the present study, infrared (IR) and Raman spectroscopy have been employed for the analysis of 3 commercially available therapeutic solutions TEVA®, MYLAN®, CERUBIDINE®, respectively containing doxorubicin, epirubicin and daunorubicin. They perfectly illustrate the analytical difficulties encountered, as these 3 chemotherapeutic drugs are isomers, hardly distinguishable with conventional approaches such as UV/VIS spectrometry. Any analytical failure to identify these molecules can lead to delays in patient treatment. While Partial Least Squares Regression analysis demonstrates that both Raman and IR can deliver satisfactory quantitative analysis in the clinical range, with respective Root Mean Square Error of Cross Validation (RMSECV) between 0.0127 - 0.0220 g·L-1 and 0.0573 - 0.0759 g·L-1, the identification rate between the 2 techniques differs substantially. Indeed, Principal Component Analysis - Factorial Discriminant Analysis (PCA-FDA) highlights that, depending on the data preprocessing applied to Raman spectra, the discrimination between the 3 drugs is decreased, with in some cases specificity and sensitivity below 50%. However, IR analysis displays encouraging results with an overall specificity and sensitivity between 99 and 100%, suggesting that reliable validation of the therapeutic solution for administration to patients can be achieved. IR and Raman spectroscopy could assist and support quality control of chemotherapeutic solutions prepared in personalised concentrations for each patient. The effective and reliable characterisation of therapeutic solutions could have a lot to offer to improve current practices in a near future.
Collapse
Affiliation(s)
- Alaa A Makki
- Université François-Rabelais de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France; Department of Pharmacognosy, Faculty of Pharmacy, University of Gezira, Sudan
| | - Franck Bonnier
- Université François-Rabelais de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France.
| | - Renaud Respaud
- Université François-Rabelais de Tours, UMR 1100, CHRU de Tours, Service de Pharmacie, F-37032 Tours, France
| | - Fatma Chtara
- Université François-Rabelais de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France
| | - Ali Tfayli
- U-Psud, University of Paris-Saclay, Lip (Sys)2, EA7357, UFR-Pharmacy, Châtenay-Malabry, France
| | - Clovis Tauber
- UMR U1253 iBrain, Université de Tours, Inserm, 37032 Tours, France
| | | | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
| | - Elhadi Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Gezira, Sudan
| | - Igor Chourpa
- Université François-Rabelais de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France
| |
Collapse
|
12
|
Lei Y, Huang X, Guo X, Wang M, Zhu S, Jin G. Application of Raman Spectroscopy for In-Line Measurement of Dispersion Uniformity of Polypropylene-Polystyrene Blends During Melt Extrusion. APPLIED SPECTROSCOPY 2018; 72:1503-1510. [PMID: 29888948 DOI: 10.1177/0003702818783436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
At present, there is a widespread phenomenon that product quality is difficult to monitor during the process of polymer melt modification such as blending, filling, and reinforcement. In consideration of this problem, this paper proposes an in-line Raman spectroscopy technique for measuring dispersion uniformity of polystyrene (PS) in polypropylene (PP)/PS blends during melt extrusion. On the basis of the optimal partial least squares (PLS) calibration model for quantitative determination of PS content in PP/PS, the fluctuations of PS content in extruding PP/PS with a mass percentage of 70 : 30 at different screw rotation speeds were predicted. The coefficient of variation (CV) of PS content at each screw rotation speed was obtained to accurately compare the dispersion uniformity, which was in agreement with the PS dispersion result characterized by the scanning electron microscope (SEM). In addition, the sensitivity of the measurement was validated by calculating the CV of PP/PS with mass percentages of 69 : 31 and 71 : 29. All of the above demonstrated that the in-line measurement system of Raman spectroscopy was able to accurately measure the dispersion uniformity of PS during the blending extrusion of PP/PS and demonstrated good sensitivity to minor changes in the blends composition.
Collapse
Affiliation(s)
- Yu Lei
- 1 National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, China
- 2 The Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou, China
| | - Xi Huang
- 1 National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, China
- 2 The Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou, China
| | - Xuemei Guo
- 1 National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, China
- 2 The Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou, China
| | - Mengmeng Wang
- 1 National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, China
- 2 The Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou, China
| | - Shichao Zhu
- 1 National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, China
- 2 The Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou, China
| | - Gang Jin
- 1 National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, China
- 2 The Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou, China
| |
Collapse
|
13
|
Reddy JP, Jones JW, Wray PS, Dennis AB, Brown J, Timmins P. Monitoring of multiple solvent induced form changes during high shear wet granulation and drying processes using online Raman spectroscopy. Int J Pharm 2018; 541:253-260. [DOI: 10.1016/j.ijpharm.2018.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/08/2018] [Accepted: 02/15/2018] [Indexed: 11/28/2022]
|