1
|
Ge L, Li X, Zhu G, Niu B, Chen Q, Zhong D, Sun X. Recent developments and applications of solid membrane in chiral separation. J Chromatogr A 2025; 1743:465652. [PMID: 39827785 DOI: 10.1016/j.chroma.2025.465652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Chirality is a fundamental property in nature, and chiral molecules are closely related to human health and the origin of life. Therefore, the exploration and preparation of optically active compounds of paramount importance. Membrane separation is a large-scale and continuous separation technique that has been developing quickly in recent years. It has many potential applications, particularly in chiral membrane separation technology, which is currently a hotspot for study. Depending on the types of membranes, chiral membranes can be divided into two categories: chiral solid membranes and chiral liquid membranes. Solid membranes outperform the others in terms of better mechanical performance and separation efficiency. This review presents in-depth summaries of chiral solid membranes made of different materials, and their applications in drug separation. It also providing insights into the potential for the future development of chiral solid membranes.
Collapse
Affiliation(s)
- Li Ge
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xinyu Li
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Gege Zhu
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Bing Niu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qin Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Dan Zhong
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xiaodong Sun
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Wu X, Wang Y, Qin B, Shao G, Wang Z, Wang T, Fu Y. A nanocellulose molecularly imprinted membrane: Preparation, characterization and application in targeted separation of taxane 10-deacetylbaccatin III. Int J Biol Macromol 2023; 253:126794. [PMID: 37699463 DOI: 10.1016/j.ijbiomac.2023.126794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Targeted separation of active phytochemicals is urgently needed in the natural medicine field. In this paper, due to the natural porosity and high biocompatibility of cellulose, a nanocellulose membrane combined with surface molecular imprinting was successfully prepared; the efficient nanocellulose-based molecular imprinted membrane (NC-MIM) provided good adsorption for the targeted separation of phytochemicals such as 10-deacetylbaccatin III (10-DAB), an essential intermediate in the synthesis of the anticancer drug paclitaxel. Through a series of characterization and adsorption experiments, the adsorption mechanism of NC-MIM was determined. At pH 8.0 and temperatures of 20 °C-40 °C, the maximum capacity of NC-MIM for adsorption of 10-DAB reached 66.90 mg g - 1, and the content of 10-DAB was dramatically increased 17.5-fold after adsorption. The specific adsorption results showed that NC-MIM had excellent capacity for targeted separation of 10-DAB from among taxane structural analogues. Even after ten cycles, NC-MIM demonstrated a remarkable adsorption capacity of 86.43%, thereby indicating exceptional selectivity and stability. The successful implementation of NC-MIM for green, safe, and efficient enrichment of phytochemicals from plants provides a promising new approach and valuable insights into its practical application.
Collapse
Affiliation(s)
- Xiaodan Wu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Ying Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Bingyang Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Guansong Shao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Zihan Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Tao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China.
| |
Collapse
|
3
|
Chen J, Wei M, Meng M. Advanced Development of Molecularly Imprinted Membranes for Selective Separation. Molecules 2023; 28:5764. [PMID: 37570733 PMCID: PMC10420217 DOI: 10.3390/molecules28155764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Molecularly imprinted membranes (MIMs), the incorporation of a given target molecule into a membrane, are generally used for separating and purifying the effective constituents of various natural products. They have been in use since 1990. The application of MIMs has been studied in many fields, including separation, medicine analysis, solid-phase extraction, and so on, and selective separation is still an active area of research. In MIM separation, two important membrane performances, flux and permselectivities, show a trade-off relationship. The enhancement not only of permselectivity, but also of flux poses a challenging task for membranologists. The present review first describes the recent development of MIMs, as well as various preparation methods, showing the features and applications of MIMs prepared with these different methods. Next, the review focuses on the relationship between flux and permselectivities, providing a detailed analysis of the selective transport mechanisms. According to the majority of the studies in the field, the paramount factors for resolving the trade-off relationship between the permselectivity and the flux in MIMs are the presence of effective high-density recognition sites and a high degree of matching between these sites and the imprinted cavity. Beyond the recognition sites, the membrane structure and pore-size distribution in the final imprinted membrane collectively determine the selective transport mechanism of MIM. Furthermore, it also pointed out that the important parameters of regeneration and antifouling performance have an essential role in MIMs for practical applications. This review subsequently highlights the emerging forms of MIM, including molecularly imprinted nanofiber membranes, new phase-inversion MIMs, and metal-organic-framework-material-based MIMs, as well as the construction of high-density recognition sites for further enhancing the permselectivity/flux. Finally, a discussion of the future of MIMs regarding breakthroughs in solving the flux-permselectivity trade-off is offered. It is believed that there will be greater advancements regarding selective separation using MIMs in the future.
Collapse
Affiliation(s)
- Jiahe Chen
- College of Physics, Jilin Normal University, 1301 Haifeng Street, Siping 136000, China;
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Maobin Wei
- College of Physics, Jilin Normal University, 1301 Haifeng Street, Siping 136000, China;
| | - Minjia Meng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Cheng Q, Ma Q, Pei H, He S, Wang R, Guo R, Liu N, Mo Z. Enantioseparation Membranes: Research Status, Challenges, and Trends. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300376. [PMID: 36794289 DOI: 10.1002/smll.202300376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Indexed: 05/18/2023]
Abstract
The purity of enantiomers plays a critical role in human health and safety. Enantioseparation is an effective way and necessary process to obtain pure chiral compounds. Enantiomer membrane separation is a new chiral resolution technique, which has the potential for industrialization. This paper mainly summarizes the research status of enantioseparation membranes including membrane materials, preparation methods, factors affecting membrane properties, and separation mechanisms. In addition, the key problems and challenges to be solved in the research of enantioseparation membranes are analyzed. Last but not least, the future development trend of the chiral membrane is expected.
Collapse
Affiliation(s)
- Qingsong Cheng
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Qian Ma
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Hebing Pei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Simin He
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Rui Wang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
5
|
Recent progress of membrane technology for chiral separation: A comprehensive review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Men J, Dong C, Shi H, Han Y, Yang Y, Wang R, Wang X, Chen J. Surface molecular imprinted membranes as a “gate” for selective transdermal release of chiral drug amlodipine. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
|
8
|
Pu J, Wang H, Huang C, Bo C, Gong B, Ou J. Progress of molecular imprinting technique for enantioseparation of chiral drugs in recent ten years. J Chromatogr A 2022; 1668:462914. [DOI: 10.1016/j.chroma.2022.462914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022]
|
9
|
|
10
|
Zhao Y, Zhu X, Jiang W, Liu H, Wang J, Sun B. Natural and Artificial Chiral-Based Systems for Separation Applications. Crit Rev Anal Chem 2021; 53:27-45. [PMID: 34152894 DOI: 10.1080/10408347.2021.1932408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chiral separation has attracted much attention for basic research and industrial applications in analytical chemistry. Generally, chiral separations use natural or artificial chiral-based materials as adsorbents. To improve the precision and efficiency of chiral separation, focus has shifted from natural and synthetic adsorbents to binary combinations of materials. This review specifically summarizes the significant advancements made in natural and artificial chiral adsorbents as promising candidates for diverse drug and biomolecule separation applications as well as the remaining drawbacks and challenges for research on chiral separations. The mechanisms of chiral-based recognition and separation and history and development of natural and artificial chiral-based systems are the focus of this review. Future directions in natural and artificial chiral-based systems for practical separations and other applications are also presented.
Collapse
Affiliation(s)
- Yuan Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xuecheng Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Wei Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
11
|
Wang Y, Chen Y, Li C, Zhu Y, Ge L, Yang K. Magnetic Molecularly Imprinted Polymers Based on Dehydroabietylamine as Chiral Monomers for the Enantioseparation of RS-Mandelic Acid. ACS OMEGA 2021; 6:14977-14984. [PMID: 34151079 PMCID: PMC8209806 DOI: 10.1021/acsomega.1c01054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Stereoselective adsorption of the enantiomers shows potential in the resolution of a racemate. In this work, we synthesized novel magnetic surface molecularly imprinted polymers (MIPs) on the surface of the γ-methacryloxypropyltrimethoxysilane (MPS)-modified Fe3O4@SiO2 particles to utilize chiral dehydroabietylamine (DHA) as a functional monomer and R-mandelic acid as a template molecule (DHA-MIPs). We performed the resolution of mandelic acid racemate (RS-MA) via adsorption on the as-prepared MIPs. The results revealed that the MIPs have good affinity and high adsorption capacity for R-MA and show better enantioselective adsorption ability for R-MA than that for S-MA. One-stage adsorption of RS-MA on the MIPs can achieve up to 53.7% enantiomeric excess (ee) for R-MA. These help us to improve the chiral separation ability of the traditional MIPs using a chiral rather than an achiral monomer in MIP preparation. The MIPs can be employed as an economic and efficient adsorbent for chiral separation of MA racemate.
Collapse
Affiliation(s)
- Yidan Wang
- School
of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yande Chen
- School
of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Congcong Li
- School
of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yi Zhu
- School
of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Li Ge
- Department
of Pharmaceutical Engineering, Medical College, Guangxi University, Nanning 530004, China
| | - Kedi Yang
- Department
of Pharmaceutical Engineering, Medical College, Guangxi University, Nanning 530004, China
| |
Collapse
|
12
|
Xu S, Zhou H, Jia H, Xu J, Ma L, Zang Y, Jiang P, Ma W, Zhang Y, Zhao W, Wang X, Zhao S, Zou Y, Zha Y. Preparation and High Performance of Cellulose Acetate Films by Grafting with Imidazole Ionic Liquid. ACS OMEGA 2021; 6:12500-12506. [PMID: 34056399 PMCID: PMC8154116 DOI: 10.1021/acsomega.0c06361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Cellulose acetate (CA) grafted with imidazole ionic liquids (CA-ILs) was synthesized by reacting CA with imidazole ionic liquids ([HO2CMmim]Cl, [HO2CEtmim]Cl, and [HO2CMmim]Br) by using tetrahydrofuran (THF) as the solvent and pyridine as the catalyst. The CA and CA-IL films were fabricated by using the casting solution method. The CA-IL films exhibited good film forming ability and mechanical properties. The successful grafting of CA with imidazole ionic liquids was confirmed by Fourier transform infrared (FTIR), 1H NMR, scanning electron microscopy (SEM), and elemental analysis, and the grafting degrees were 2.24, 2.45, and 3.30%, respectively. The CO2 permeation properties of the CA-IL films were 65.5, 105.6, and 88.3 Barrer, increased up to 2.0, 3.2, and 2.7 times, respectively, as compared to pure CA (32.6 Barrer). The CO2/CH4 selectivities of the CA-IL films were 15.6, 12.6, and 19.2, increased up to 1.7, 1.4, and 2.1 times, respectively, as compared to pure CA (9.26). Therefore, it can be concluded that the imidazole ionic liquids are immensely useful for improving the gas separation performance of CA films.
Collapse
Affiliation(s)
- Shuangping Xu
- College of Materials Science
and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric
Composite Materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Hailiang Zhou
- College of Materials Science
and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric
Composite Materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Hongge Jia
- College of Materials Science
and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric
Composite Materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Jingyu Xu
- College of Materials Science
and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric
Composite Materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Liqun Ma
- College of Materials Science
and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric
Composite Materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Yu Zang
- College of Materials Science
and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric
Composite Materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Pengfei Jiang
- College of Materials Science
and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric
Composite Materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Wenqiang Ma
- College of Materials Science
and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric
Composite Materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Yushu Zhang
- College of Materials Science
and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric
Composite Materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Wenwen Zhao
- College of Materials Science
and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric
Composite Materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Xintian Wang
- College of Materials Science
and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric
Composite Materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Shijun Zhao
- College of Materials Science
and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric
Composite Materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Yonglan Zou
- College of Materials Science
and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric
Composite Materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| | - Yuxin Zha
- College of Materials Science
and Engineering, Heilongjiang Provinces Key Laboratory of Polymeric
Composite Materials, Qiqihar University, Wenhua Street, Qiqihar 161006, China
| |
Collapse
|
13
|
Zhao Y, Zhu X, Jiang W, Liu H, Sun B. Chiral Recognition for Chromatography and Membrane-Based Separations: Recent Developments and Future Prospects. Molecules 2021; 26:1145. [PMID: 33669919 PMCID: PMC7924630 DOI: 10.3390/molecules26041145] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
With the rapid development of global industry and increasingly frequent product circulation, the separation and detection of chiral drugs/pesticides are becoming increasingly important. The chiral nature of substances can result in harm to the human body, and the selective endocrine-disrupting effect of drug enantiomers is caused by differential enantiospecific binding to receptors. This review is devoted to the specific recognition and resolution of chiral molecules by chromatography and membrane-based enantioseparation techniques. Chromatographic enantiomer separations with chiral stationary phase (CSP)-based columns and membrane-based enantiomer filtration are detailed. In addition, the unique properties of these chiral resolution methods have been summarized for practical applications in the chemistry, environment, biology, medicine, and food industries. We further discussed the recognition mechanism in analytical enantioseparations and analyzed recent developments and future prospects of chromatographic and membrane-based enantioseparations.
Collapse
Affiliation(s)
| | | | | | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China; (Y.Z.); (X.Z.); (W.J.); (B.S.)
| | | |
Collapse
|
14
|
Abstract
Rosy prospects of chiral membranes are proposed with novel and robust materials.
Collapse
Affiliation(s)
- Hongda Han
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| | - Wei Liu
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| | - Yin Xiao
- School of Chemical Engineering and Technology
- Tianjin Engineering Research Center of Functional Fine Chemicals
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Xiaofei Ma
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| | - Yong Wang
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| |
Collapse
|
15
|
Xu J, Jia H, Yang N, Wang Q, Yang G, Zhang M, Xu S, Zang Y, Ma L, Jiang P, Zhou H, Wang H. High Efficiency Gas Permeability Membranes from Ethyl Cellulose Grafted with Ionic Liquids. Polymers (Basel) 2019; 11:E1900. [PMID: 31752139 PMCID: PMC6918432 DOI: 10.3390/polym11111900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 11/17/2022] Open
Abstract
Ethyl cellulose was grafted with ionic liquids in optimal yields (62.5-64.1%) and grafting degrees (5.93-7.90%) by the esterification of the hydroxyl groups in ethyl cellulose with the carboxyl groups in ionic liquids. In IR spectra of the ethyl cellulose derivatives exhibited C=O bond stretching vibration peaks at 1760 or 1740 cm-1, confirming the formation of the ester groups and furnishing the evidence of the successful grafting of ethyl cellulose with ionic liquids. The ethyl cellulose grafted with ionic liquids could be formed into membranes by using the casting solution method. The resulting membranes exhibited good membrane forming ability and mechanical properties. The EC grafted with ionic liquids-based membranes demonstrated PCO2/PCH4 separation factors of up to 18.8, whereas the PCO2/PCH4 separation factor of 9.0 was obtained for pure EC membrane (both for CO2/CH4 mixture gas). The membranes also demonstrated an excellent gas permeability coefficient PCO2, up to 199 Barrer, which was higher than pure EC (PCO2 = 46.8 Barrer). Therefore, it can be concluded that the ionic liquids with imidazole groups are immensely useful for improving the gas separation performances of EC membranes.
Collapse
Affiliation(s)
- Jingyu Xu
- College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, College of Architecture and Civil Engineering, Qiqihar University, Wenhua Street 42, Qiqihar 161006, China; (J.X.); (M.Z.); (S.X.); (Y.Z.); (L.M.); (P.J.); (H.Z.); (H.W.)
| | - Hongge Jia
- College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, College of Architecture and Civil Engineering, Qiqihar University, Wenhua Street 42, Qiqihar 161006, China; (J.X.); (M.Z.); (S.X.); (Y.Z.); (L.M.); (P.J.); (H.Z.); (H.W.)
| | - Nan Yang
- College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, College of Architecture and Civil Engineering, Qiqihar University, Wenhua Street 42, Qiqihar 161006, China; (J.X.); (M.Z.); (S.X.); (Y.Z.); (L.M.); (P.J.); (H.Z.); (H.W.)
| | - Qingji Wang
- Daqing Oilfield Construction Design and Research Institute, XiLing Road 32, Daqing 1637241, China;
| | - Guoxing Yang
- Daqing Petrochemical Research Center, Petrochemical Research Institute, China National Petroleum Corporation, Chengxiang Road 2, Daqing 163714, China;
| | - Mingyu Zhang
- College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, College of Architecture and Civil Engineering, Qiqihar University, Wenhua Street 42, Qiqihar 161006, China; (J.X.); (M.Z.); (S.X.); (Y.Z.); (L.M.); (P.J.); (H.Z.); (H.W.)
| | - Shuangping Xu
- College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, College of Architecture and Civil Engineering, Qiqihar University, Wenhua Street 42, Qiqihar 161006, China; (J.X.); (M.Z.); (S.X.); (Y.Z.); (L.M.); (P.J.); (H.Z.); (H.W.)
| | - Yu Zang
- College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, College of Architecture and Civil Engineering, Qiqihar University, Wenhua Street 42, Qiqihar 161006, China; (J.X.); (M.Z.); (S.X.); (Y.Z.); (L.M.); (P.J.); (H.Z.); (H.W.)
| | - Liqun Ma
- College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, College of Architecture and Civil Engineering, Qiqihar University, Wenhua Street 42, Qiqihar 161006, China; (J.X.); (M.Z.); (S.X.); (Y.Z.); (L.M.); (P.J.); (H.Z.); (H.W.)
| | - Pengfei Jiang
- College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, College of Architecture and Civil Engineering, Qiqihar University, Wenhua Street 42, Qiqihar 161006, China; (J.X.); (M.Z.); (S.X.); (Y.Z.); (L.M.); (P.J.); (H.Z.); (H.W.)
| | - Hailiang Zhou
- College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, College of Architecture and Civil Engineering, Qiqihar University, Wenhua Street 42, Qiqihar 161006, China; (J.X.); (M.Z.); (S.X.); (Y.Z.); (L.M.); (P.J.); (H.Z.); (H.W.)
| | - Honghan Wang
- College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, College of Architecture and Civil Engineering, Qiqihar University, Wenhua Street 42, Qiqihar 161006, China; (J.X.); (M.Z.); (S.X.); (Y.Z.); (L.M.); (P.J.); (H.Z.); (H.W.)
| |
Collapse
|
16
|
Wu D, Pan F, Tan W, Gao L, Tao Y, Kong Y. Recent progress of enantioseparation under scale production (2014–2019). J Sep Sci 2019; 43:337-347. [DOI: 10.1002/jssc.201900682] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/11/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and TechnologySchool of Petrochemical EngineeringChangzhou University Changzhou P. R. China
| | - Fei Pan
- Jiangsu Key Laboratory of Advanced Materials and TechnologySchool of Petrochemical EngineeringChangzhou University Changzhou P. R. China
| | - Wensheng Tan
- Changzhou Key Laboratory of Large Plastic Parts Intelligence ManufacturingChangzhou College of Information Technology Changzhou P. R. China
| | - Li Gao
- Jiangsu Key Laboratory of Advanced Materials and TechnologySchool of Petrochemical EngineeringChangzhou University Changzhou P. R. China
| | - Yongxin Tao
- Jiangsu Key Laboratory of Advanced Materials and TechnologySchool of Petrochemical EngineeringChangzhou University Changzhou P. R. China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and TechnologySchool of Petrochemical EngineeringChangzhou University Changzhou P. R. China
| |
Collapse
|