1
|
Capaldo L, Wen Z, Noël T. A field guide to flow chemistry for synthetic organic chemists. Chem Sci 2023; 14:4230-4247. [PMID: 37123197 PMCID: PMC10132167 DOI: 10.1039/d3sc00992k] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023] Open
Abstract
Flow chemistry has unlocked a world of possibilities for the synthetic community, but the idea that it is a mysterious "black box" needs to go. In this review, we show that several of the benefits of microreactor technology can be exploited to push the boundaries in organic synthesis and to unleash unique reactivity and selectivity. By "lifting the veil" on some of the governing principles behind the observed trends, we hope that this review will serve as a useful field guide for those interested in diving into flow chemistry.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| | - Zhenghui Wen
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam 1098 XH Amsterdam The Netherlands
| |
Collapse
|
2
|
Ralbovsky NM, Smith JP. Process analytical technology and its recent applications for asymmetric synthesis. Talanta 2022; 252:123787. [DOI: 10.1016/j.talanta.2022.123787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
3
|
Kang JH, Ahn GN, Lee H, Yim SJ, Lahore S, Lee HJ, Kim H, Kim JT, Kim DP. Scalable Subsecond Synthesis of Drug Scaffolds via Aryllithium Intermediates by Numbered-up 3D-Printed Metal Microreactors. ACS CENTRAL SCIENCE 2022; 8:43-50. [PMID: 35106371 PMCID: PMC8796307 DOI: 10.1021/acscentsci.1c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 05/10/2023]
Abstract
Continuous-flow microreactors enable ultrafast chemistry; however, their small capacity restricts industrial-level productivity of pharmaceutical compounds. In this work, scale-up subsecond synthesis of drug scaffolds was achieved via a 16 numbered-up printed metal microreactor (16N-PMR) assembly to render high productivity up to 20 g for 10 min operation. Initially, ultrafast synthetic chemistry of unstable lithiated intermediates in the halogen-lithium exchange reactions of three aryl halides and subsequent reactions with diverse electrophiles were carried out using a single microreactor (SMR). Larger production of the ultrafast synthesis was achieved by devising a monolithic module of 4 numbered-up 3D-printed metal microreactor (4N-PMR) that was integrated by laminating four SMRs and four bifurcation flow distributors in a compact manner. Eventually, the 16N-PMR system for the scalable subsecond synthesis of three drug scaffolds was assembled by stacking four monolithic modules of 4N-PMRs.
Collapse
Affiliation(s)
- Ji-Ho Kang
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Gwang-Noh Ahn
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Heekwon Lee
- Department
of Mechanical Engineering, The University
of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Se-Jun Yim
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Santosh Lahore
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Hyune-Jea Lee
- Department
of Chemistry, College of Science, Korea
University, Seoul 02841, Republic of Korea
| | - Heejin Kim
- Department
of Chemistry, College of Science, Korea
University, Seoul 02841, Republic of Korea
| | - Ji Tae Kim
- Department
of Mechanical Engineering, The University
of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dong-Pyo Kim
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| |
Collapse
|
4
|
Peng Z, Wang G, Moghtaderi B, Doroodchi E. A review of microreactors based on slurry Taylor (segmented) flow. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Telescoped lithiation, C-arylation and methoxylation in flow-batch hybrid toward the synthesis of canagliflozin. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Knochel P, Djukanovic D, Heinz B, Mandrelli F, Mostarda S, Filipponi P, Martin B. Continuous Flow Acylation of (Hetero)aryllithiums with Polyfunctional N,N-Dimethylamides and Tetramethylurea in Toluene. Chemistry 2021; 27:13977-13981. [PMID: 34387898 PMCID: PMC8519161 DOI: 10.1002/chem.202102805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 11/05/2022]
Abstract
The continuous flow reaction of various aryl or heteroaryl bromides in toluene in the presence of THF (1.0 equiv) with sec -BuLi (1.1 equiv) provided at 25 °C within 40 sec the corresponding aryllithiums which were acylated with various functionalized N,N-dimethylamides including easily enolizable amides at -20 °C within 27 sec, producing highly functionalized ketones in 48-90% yield (36 examples). This method was well suited for the preparation of α-chiral ketones such as naproxene and ibuprofen derived ketones with 99% ee . A one-pot stepwise bis-addition of two different lithium organometallics to 1,1,3,3-tetramethyurea (TMU) provided unsymmetrical ketones in 69-79% yield (9 examples).
Collapse
Affiliation(s)
- Paul Knochel
- Ludwig-Maximilians-Universitat Munchen, Department of Chemistry, Butenandtstr. 5-13, 81377, München, GERMANY
| | - Dimitrije Djukanovic
- Ludwig Maximillians University Munich: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Benjamin Heinz
- Ludwig Maximillians University Munich: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | | | - Serena Mostarda
- Novartis Pharma Schweiz AG, Chemical Development, SWITZERLAND
| | - Paolo Filipponi
- Novartis Pharma Schweiz AG, Chemical Development, SWITZERLAND
| | - Benjamin Martin
- Novartis Pharma Schweiz AG, Chemical Development, SWITZERLAND
| |
Collapse
|
7
|
Abstract
In the past decade, the field of organic synthesis has witnessed tremendous advancements in the areas of photoredox catalysis, electrochemistry, C-H activation, reductive coupling and flow chemistry. While these methods and technologies offer many strategic advantages in streamlining syntheses, their application on the process scale is complicated by several factors. In this Review, we discuss the challenges that arise when these reaction classes and/or flow chemistry technology are taken from a research laboratory operating at the milligram scale to a reactor capable of producing kilograms of product. We discuss how these challenges have been overcome through chemical and engineering solutions. Specifically, this Review will highlight key examples that have led to the production of multi-hundred-gram to kilogram quantities of active pharmaceutical ingredients or their intermediates and will provide insight on the scaling-up process to those developing new technologies and reactions.
Collapse
|
8
|
Harenberg JH, Weidmann N, Wiegand AJ, Hoefer CA, Annapureddy RR, Knochel P. (2-Ethylhexyl)sodium: A Hexane-Soluble Reagent for Br/Na-Exchanges and Directed Metalations in Continuous Flow. Angew Chem Int Ed Engl 2021; 60:14296-14301. [PMID: 33826212 PMCID: PMC8252725 DOI: 10.1002/anie.202103031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/14/2022]
Abstract
We report the on-demand generation of hexane-soluble (2-ethylhexyl)sodium (1) from 3-(chloromethyl)heptane (2) using a sodium-packed-bed reactor under continuous flow conditions. Thus, the resulting solution of 1 is free of elemental sodium and therefore suited for a range of synthetic applications. This new procedure avoids the storage of an alkylsodium and limits the handling of metallic sodium to a minimum. (2-Ethylhexyl)sodium (1) proved to be a very useful reagent and undergoes in-line Br/Na-exchanges as well as directed sodiations. The resulting arylsodium intermediates are subsequently trapped in batch with various electrophiles such as ketones, aldehydes, Weinreb-amides, imines, allyl bromides, disulfides and alkyl iodides. A reaction scale-up of the Br/Na-exchange using an in-line electrophile quench was also reported.
Collapse
Affiliation(s)
- Johannes H. Harenberg
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Niels Weidmann
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Alexander J. Wiegand
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Carla A. Hoefer
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | | | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
9
|
Harenberg JH, Weidmann N, Wiegand AJ, Hoefer CA, Annapureddy RR, Knochel P. (2‐Ethylhexyl)natrium: Ein hexanlösliches Reagenz für Br/Na‐Austauschreaktionen und dirigierte Metallierungen im kontinuierlichen Durchfluss. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Johannes H. Harenberg
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Niels Weidmann
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Alexander J. Wiegand
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Carla A. Hoefer
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Rajasekar Reddy Annapureddy
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
10
|
Scale-up of micro- and milli-reactors: An overview of strategies, design principles and applications. CHEMICAL ENGINEERING SCIENCE: X 2021. [DOI: 10.1016/j.cesx.2021.100097] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
11
|
Harenberg JH, Weidmann N, Karaghiosoff K, Knochel P. Continuous Flow Sodiation of Substituted Acrylonitriles, Alkenyl Sulfides and Acrylates. Angew Chem Int Ed Engl 2021; 60:731-735. [PMID: 33026681 PMCID: PMC7821005 DOI: 10.1002/anie.202012085] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 12/14/2022]
Abstract
The sodiation of substituted acrylonitriles and alkenyl sulfides in a continuous flow set-up using NaDA (sodium diisopropylamide) in EtNMe2 or NaTMP (sodium 2,2,6,6-tetramethylpiperidide)⋅TMEDA in n-hexane provides sodiated acrylonitriles and alkenyl sulfides, which are subsequently trapped in batch with various electrophiles such as aldehydes, ketones, disulfides and allylic bromides affording functionalized acrylonitriles and alkenyl sulfides. This flow-procedure was successfully extended to other acrylates by using Barbier-type conditions.
Collapse
Affiliation(s)
- Johannes H. Harenberg
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Niels Weidmann
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Konstantin Karaghiosoff
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
12
|
Harenberg JH, Weidmann N, Karaghiosoff K, Knochel P. Natriierung von Substituierten Acrylonitrilen, Alkenylsulfiden und Acrylaten im Kontinuierlichen Durchfluss. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Johannes H. Harenberg
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Niels Weidmann
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Konstantin Karaghiosoff
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
13
|
Mortzfeld F, Polenk J, Guelat B, Venturoni F, Schenkel B, Filipponi P. Reaction Calorimetry in Continuous Flow Mode: A New Approach for the Thermal Characterization of High Energetic and Fast Reactions. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Frederik Mortzfeld
- Novartis Pharma AG, Chemical Analytical Development, Novartis Campus, 4056 Basel, Switzerland
| | - Jutta Polenk
- Novartis Pharma AG, Chemical Analytical Development, Novartis Campus, 4056 Basel, Switzerland
| | - Bertrand Guelat
- Novartis Pharma AG, Chemical Analytical Development, Novartis Campus, 4056 Basel, Switzerland
| | - Francesco Venturoni
- Novartis Pharma AG, Chemical Analytical Development, Novartis Campus, 4056 Basel, Switzerland
| | - Berthold Schenkel
- Novartis Pharma AG, Chemical Analytical Development, Novartis Campus, 4056 Basel, Switzerland
| | - Paolo Filipponi
- Novartis Pharma AG, Chemical Analytical Development, Novartis Campus, 4056 Basel, Switzerland
| |
Collapse
|
14
|
von Keutz T, Williams JD, Kappe CO. Continuous Flow C-Glycosylation via Metal–Halogen Exchange: Process Understanding and Improvements toward Efficient Manufacturing of Remdesivir. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00370] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Timo von Keutz
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Jason D. Williams
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - C. Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
15
|
Içten E, Maloney AJ, Beaver MG, Shen DE, Zhu X, Graham LR, Robinson JA, Huggins S, Allian A, Hart R, Walker SD, Rolandi P, Braatz RD. A Virtual Plant for Integrated Continuous Manufacturing of a Carfilzomib Drug Substance Intermediate, Part 1: CDI-Promoted Amide Bond Formation. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Elçin Içten
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Andrew J. Maloney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew G. Beaver
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Dongying Erin Shen
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Xiaoxiang Zhu
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Lauren R. Graham
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jo Anna Robinson
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Seth Huggins
- Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Ayman Allian
- Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Roger Hart
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Shawn D. Walker
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Pablo Rolandi
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Richard D. Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Scaling continuous API synthesis from milligram to kilogram: extending the enabling benefits of micro to the plant. J Flow Chem 2020. [DOI: 10.1007/s41981-019-00060-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Brill ZG, Ritts CB, Mansoor UF, Sciammetta N. Continuous Flow Enables Metallaphotoredox Catalysis in a Medicinal Chemistry Setting: Accelerated Optimization and Library Execution of a Reductive Coupling between Benzylic Chlorides and Aryl Bromides. Org Lett 2019; 22:410-416. [DOI: 10.1021/acs.orglett.9b04117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zachary G. Brill
- Department of Discovery Chemistry, MRL, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Casey B. Ritts
- Department of Discovery Chemistry, MRL, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Umar Faruk Mansoor
- Department of Discovery Chemistry, MRL, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Nunzio Sciammetta
- Department of Discovery Chemistry, MRL, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| |
Collapse
|
18
|
Rivera NR, Kassim B, Grigorov P, Wang H, Armenante M, Bu X, Lekhal A, Variankaval N. Investigation of a Flow Step Clogging Incident: A Precautionary Note on the Use of THF in Commercial-Scale Continuous Process. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Baumann M. Integrating continuous flow synthesis with in-line analysis and data generation. Org Biomol Chem 2019; 16:5946-5954. [PMID: 30062354 DOI: 10.1039/c8ob01437j] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Continuous flow synthesis of fine chemicals has successfully advanced from an academic niche area to a rapidly growing field of its own that directly impacts developments and applications in industrial settings. Whilst the numerous advantages of flow over batch processing are widely recognised and have led to a wider uptake of continuous flow synthesis within the community, we have reached a point where continuous flow synthesis has to transition from a stand-alone enabling technology to a readily integrated synthesis concept. Thus it is paramount to embrace a multitude of in-line analysis and purification techniques to not only allow for efficiently telescoped multi-step sequences but ultimately generate bioactivity data concomitantly on newly synthesised entities. This short review summarises the state of the art in this field and presents both challenges and opportunities that arise from this ambitious endeavour.
Collapse
Affiliation(s)
- Marcus Baumann
- School of Chemistry, University College Dublin, Science Centre South, Belfield, Dublin 4, Ireland.
| |
Collapse
|
20
|
Bogdan AR, Dombrowski AW. Emerging Trends in Flow Chemistry and Applications to the Pharmaceutical Industry. J Med Chem 2019; 62:6422-6468. [DOI: 10.1021/acs.jmedchem.8b01760] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrew R. Bogdan
- Discovery Chemistry and Technology, AbbVie, Inc. 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Amanda W. Dombrowski
- Discovery Chemistry and Technology, AbbVie, Inc. 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
21
|
DeCroos P, Han ZS, Sidhu K, Lorenz J, Nummy L, Byrne D, Qu B, Xu Y, Wu L, Lee H, Roschangar F, Song JJ, Senanayake CH. Development of a Large-Scale Asymmetric Process for tert-Butanesulfinamide. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Philomen DeCroos
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Zhengxu S. Han
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Kanwar Sidhu
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Jon Lorenz
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Larry Nummy
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Denis Byrne
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Bo Qu
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Yibo Xu
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Ling Wu
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Heewon Lee
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Frank Roschangar
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Jinhua J. Song
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Chris H. Senanayake
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| |
Collapse
|
22
|
Sivakumar V, Watile RA, Colacot TJ. Organometallics in Process Chemistry: An Historical Snapshot. TOP ORGANOMETAL CHEM 2019. [DOI: 10.1007/3418_2019_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Weidmann N, Ketels M, Knochel P. Natriierung von Aromaten und Heteroaromaten im kontinuierlichen Durchfluss. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Niels Weidmann
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstraße 5–13, Haus F 81377 München Deutschland
| | - Marthe Ketels
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstraße 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstraße 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
24
|
Weidmann N, Ketels M, Knochel P. Sodiation of Arenes and Heteroarenes in Continuous Flow. Angew Chem Int Ed Engl 2018; 57:10748-10751. [PMID: 29873427 DOI: 10.1002/anie.201803961] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The first sodiations of (hetero)arenes in continuous flow using NaDA (sodium diisopropylamide) in Me2 EtN are reported. This flow procedure enables sodiation of functionalized arenes and heteroarenes that decompose under batch-sodiation conditions. The resulting sodiated (hetero)arenes react instantly with various electrophiles, such as ketones, aldehydes, isocyanates, alkyl bromides, and disulfides, affording polyfunctionalized (hetero)arenes in high yields. Scale-up is possible without further optimization.
Collapse
Affiliation(s)
- Niels Weidmann
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Marthe Ketels
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Paul Knochel
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| |
Collapse
|
25
|
Lévesque F, Rogus NJ, Spencer G, Grigorov P, McMullen JP, Thaisrivongs DA, Davies IW, Naber JR. Advancing Flow Chemistry Portability: A Simplified Approach to Scaling Up Flow Chemistry. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00063] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- François Lévesque
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Nicholas J. Rogus
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Glenn Spencer
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Plamen Grigorov
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Jonathan P. McMullen
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - David A. Thaisrivongs
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Ian W. Davies
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - John R. Naber
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| |
Collapse
|
26
|
Thaisrivongs DA, Morris WJ, Tan L, Song ZJ, Lyons TW, Waldman JH, Naber JR, Chen W, Chen L, Zhang B, Yang J. A Next Generation Synthesis of BACE1 Inhibitor Verubecestat (MK-8931). Org Lett 2018; 20:1568-1571. [DOI: 10.1021/acs.orglett.8b00259] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- David A. Thaisrivongs
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - William J. Morris
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Lushi Tan
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Zhiguo J. Song
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Thomas W. Lyons
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Jacob H. Waldman
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - John R. Naber
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Wenyong Chen
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Lu Chen
- WuXi AppTec (Shanghai) Pharmaceutical Co. Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Baoyun Zhang
- WuXi AppTec (Shanghai) Pharmaceutical Co. Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jun Yang
- WuXi AppTec (Shanghai) Pharmaceutical Co. Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
27
|
Porcar R, Lozano P, Burguete MI, Garcia-Verdugo E, Luis SV. Dimethyl carbonate as a non-innocent benign solvent for the multistep continuous flow synthesis of amino alcohols. REACT CHEM ENG 2018. [DOI: 10.1039/c8re00097b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient methodology for the production and resolution of amino alcohols with a low environmental impact has been developed.
Collapse
Affiliation(s)
- Raul Porcar
- Dpt. of Inorganic and Organic Chemistry
- Supramolecular and Sustainable Chemistry Group
- University Jaume I
- Spain
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología
- Facultad de Química
- Universidad de Murcia
- Campus de Excelencia Internacional Regional “Campus Mare Nostrum”
- E-30100 Murcia
| | - Maria Isabel Burguete
- Dpt. of Inorganic and Organic Chemistry
- Supramolecular and Sustainable Chemistry Group
- University Jaume I
- Spain
| | - Eduardo Garcia-Verdugo
- Dpt. of Inorganic and Organic Chemistry
- Supramolecular and Sustainable Chemistry Group
- University Jaume I
- Spain
| | - Santiago V. Luis
- Dpt. of Inorganic and Organic Chemistry
- Supramolecular and Sustainable Chemistry Group
- University Jaume I
- Spain
| |
Collapse
|