1
|
Martina K, Moran MJ, Manzoli M, Trukhan MV, Kuhn S, Van Gerven T, Cravotto G. Copper-Catalyzed Continuous-Flow Transfer Hydrogenation of Nitroarenes to Anilines: A Scalable and Reliable Protocol. Org Process Res Dev 2024; 28:1515-1528. [PMID: 38783856 PMCID: PMC11110069 DOI: 10.1021/acs.oprd.3c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 05/25/2024]
Abstract
A robust supported catalyst that is made up of copper nanoparticles on Celite has been successfully prepared for the selective transfer hydrogenation of aromatic nitrobenzenes to anilines under continuous flow. The method is efficient and environmentally benign thanks to the absence of hydrogen gas and precious metals. Long-term stability studies show that the catalytic system is able to achieve very high nitrobenzene conversion (>99%) when working for up to 145 h. The versatility of the transfer hydrogenation system has been tested using representative examples of nitroarenes, with moderate-to-excellent yields being obtained. The packed bed reactor (PBR) permits the use of a setup that can provide products via simple isolation by SPE without the need for further purification. The recovery and reuse of either EG or the ion-exchange resin leads to consistent waste reduction; therefore, E-factor distribution analysis has highlighted the environmental efficiency of this synthetic protocol.
Collapse
Affiliation(s)
- Katia Martina
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Maria Jesus Moran
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Maela Manzoli
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Mikhail V. Trukhan
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Simon Kuhn
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tom Van Gerven
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Giancarlo Cravotto
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| |
Collapse
|
2
|
Gold nanoparticles decorated two-dimensional TiO2 nanosheets as effective catalyst for nitroarenes and rhodamine B dye reduction in batch and continuous flow methods. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
Micropacked‐bed Reactor for Continuous Hydrogenation of Aromatic Dinitro Compounds. ChemistrySelect 2022. [DOI: 10.1002/slct.202203577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Static Mixers Producible by Additive Manufacturing: Novel Rapid Automatic Optimisation and Practical Evaluation. Polymers (Basel) 2022; 14:polym14214646. [DOI: 10.3390/polym14214646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
In the extrusion of plastics, the thermal and material homogeneity of the plastic melt at the die entry are of high importance for the extrudate quality. While static mixers are widely used to improve the melt homogeneity, previous attempts at optimisation for reduced pressure loss and improved mixing had to be performed by hand and human experience, limiting the degrees of freedom and efficiency. A new automatic optimisation method based on the open source software OpenFOAM was developed. Using immersed boundary methods, new target functions in the pre-existing routine adjointShapeOptimizationFoam and an additional algorithm checking the suitability for additive manufacturing and fixing the geometry during run-time is presented. The new algorithm is used to optimise an existing static mixer based on an X-type geometry with integrated oil channels, maximising the heat exchange between oil and melt. Based on the results of these simulative optimisations, the best candidates were manufactured using selective laser melting and experimental trials were run. Experimental validation shows that with our optimisation algorithm, a pressure loss reduction of 10% could be achieved. The core melt temperature was reduced by 6 ∘C, improving the thermal homogenisation as well. While the main advantage of this method is the rapid optimisation taking the operating point into account, the trials also showed positive results in off-design operating points. This allows the low-cost design and manufacture of individualised static mixers.
Collapse
|
5
|
Xia Y, Ye B, Liu M, Jiang M, Chen F. Continuous-Flow Synthesis of syn-2-Amino-1,3-diol via Catalytic Hydrogenation: A Vital Intermediate of (+)-Thiamphenicol and (+)-Florfenicol. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yingqi Xia
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Baijun Ye
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
6
|
Nambiar AK, Breen CP, Hart T, Kulesza T, Jamison TF, Jensen KF. Bayesian Optimization of Computer-Proposed Multistep Synthetic Routes on an Automated Robotic Flow Platform. ACS CENTRAL SCIENCE 2022; 8:825-836. [PMID: 35756374 PMCID: PMC9228554 DOI: 10.1021/acscentsci.2c00207] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 06/15/2023]
Abstract
Computer-aided synthesis planning (CASP) tools can propose retrosynthetic pathways and forward reaction conditions for the synthesis of organic compounds, but the limited availability of context-specific data currently necessitates experimental development to fully specify process details. We plan and optimize a CASP-proposed and human-refined multistep synthesis route toward an exemplary small molecule, sonidegib, on a modular, robotic flow synthesis platform with integrated process analytical technology (PAT) for data-rich experimentation. Human insights address catalyst deactivation and improve yield by strategic choices of order of addition. Multi-objective Bayesian optimization identifies optimal values for categorical and continuous process variables in the multistep route involving 3 reactions (including heterogeneous hydrogenation) and 1 separation. The platform's modularity, robotic reconfigurability, and flexibility for convergent synthesis are shown to be essential for allowing variation of downstream residence time in multistep flow processes and controlling the order of addition to minimize undesired reactivity. Overall, the work demonstrates how automation, machine learning, and robotics enhance manual experimentation through assistance with idea generation, experimental design, execution, and optimization.
Collapse
Affiliation(s)
- Anirudh
M. K. Nambiar
- Department
of Chemical Engineering, Massachusetts Institute
of Technology,77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Christopher P. Breen
- Department
of Chemistry, Massachusetts Institute of
Technology,77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Travis Hart
- Department
of Chemical Engineering, Massachusetts Institute
of Technology,77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy Kulesza
- Department
of Chemical Engineering, Massachusetts Institute
of Technology,77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy F. Jamison
- Department
of Chemistry, Massachusetts Institute of
Technology,77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Klavs F. Jensen
- Department
of Chemical Engineering, Massachusetts Institute
of Technology,77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Masson E, Maciejewski EM, Wheelhouse KMP, Edwards LJ. Fixed Bed Continuous Hydrogenations in Trickle Flow Mode: A Pharmaceutical Industry Perspective. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Edward Masson
- Chemical Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Erin M. Maciejewski
- Chemical Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | | | - Lee J. Edwards
- Chemical Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| |
Collapse
|
8
|
Pethő B, Szilágyi GB, Mengyel B, Nagy T, Farkas F, Kátai-Fadgyas K, Volk B. Development and Process Intensification of an Efficient Flow–Cascade Reaction Sequence in the Synthesis of Afizagabar. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bálint Pethő
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - Gábor B. Szilágyi
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - Béla Mengyel
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - Tamás Nagy
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - Ferenc Farkas
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - Katalin Kátai-Fadgyas
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - Balázs Volk
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| |
Collapse
|
9
|
Si Y, Ming W, Liu S, Wei W, Ji L, Gong D, Wang J, Zuo C, Huang H, Yan D. Continuous Catalytic Hydrogenation of a Key Intermediate of Riluzole Using Micropacked-bed Reactor. CHEM LETT 2022. [DOI: 10.1246/cl.210716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yang Si
- Shenyang Research Institute of Chemical Industry, 8 East Shen Liao Road, Shenyang, 110021, P. R. of China
| | - Weixing Ming
- Shenyang Research Institute of Chemical Industry, 8 East Shen Liao Road, Shenyang, 110021, P. R. of China
| | - Song Liu
- Shenyang Research Institute of Chemical Industry, 8 East Shen Liao Road, Shenyang, 110021, P. R. of China
| | - Wei Wei
- Shenyang Research Institute of Chemical Industry, 8 East Shen Liao Road, Shenyang, 110021, P. R. of China
| | - Lu Ji
- Shenyang Research Institute of Chemical Industry, 8 East Shen Liao Road, Shenyang, 110021, P. R. of China
| | - Dangsheng Gong
- Shenyang Research Institute of Chemical Industry, 8 East Shen Liao Road, Shenyang, 110021, P. R. of China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255012, P. R. of China
| | - Cuncun Zuo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255012, P. R. of China
| | - Haofei Huang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255012, P. R. of China
| | - Dongmao Yan
- Shenyang Research Institute of Chemical Industry, 8 East Shen Liao Road, Shenyang, 110021, P. R. of China
| |
Collapse
|
10
|
Simon K, Sagmeister P, Munday RH, Leslie K, Hone CA, Kappe CO. Automated Flow and Real-Time Analytics Approach for Screening Functional Group Tolerance in Heterogeneous Catalytic Reactions. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00059h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterogeneous hydrogenation reactions are widely used in synthesis, and performing them using continuous flow technologies addresses many of the safety, scalability and sustainability issues. However, one of the main potential...
Collapse
|
11
|
Kundra M, Zhu Y, Nguyen X, Fraser D, Hornung CH, Tsanaktsidis J. 3D printed nickel catalytic static mixers made by corrosive chemical treatment for use in continuous flow hydrogenation. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00456e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Catalytic static mixers, 3D printed from nickel alloys, were treated with etching or leaching solutions to activate their surfaces for use in hydrogenation of alkenes, aldehydes and nitro-groups.
Collapse
Affiliation(s)
- Milan Kundra
- CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia
| | - Yutong Zhu
- CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia
| | - Xuan Nguyen
- CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia
| | - Darren Fraser
- CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia
| | | | - John Tsanaktsidis
- CSIRO Manufacturing, Bag 10, Clayton South, Victoria 3169, Australia
| |
Collapse
|
12
|
Lebl R, Zhu Y, Ng D, Hornung CH, Cantillo D, Kappe CO. Scalable continuous flow hydrogenations using Pd/Al2O3-coated rectangular cross-section 3D-printed static mixers. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.07.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Ng SSY, Walker DM, Hawkins JM, Khan SA. 3D-printed capillary force trap reactors (CFTRs) for multiphase catalytic flow chemistry. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00462j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Figure of 3D illustration of a capillary trap force reactor (CFTR) with transiently trapped liquid nanoparticle catalysts in dimple-shaped capillary traps in the presence of a gas–liquid segmented flow, for the hydrogenation of 1-hexene to n-hexane.
Collapse
Affiliation(s)
- Stella S. Y. Ng
- Pfizer Asia Manufacturing Pte Ltd, Manufacturing Technology Development Centre (MTDC), 1 Pesek Road, Singapore 627833, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - David M. Walker
- Pfizer Asia Manufacturing Pte Ltd, Manufacturing Technology Development Centre (MTDC), 1 Pesek Road, Singapore 627833, Singapore
| | - Joel M. Hawkins
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, USA
| | - Saif A. Khan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| |
Collapse
|
14
|
|
15
|
Greener Synthesis of Pristane by Flow Dehydrative Hydrogenation of Allylic Alcohol Using a Packed-Bed Reactor Charged by Pd/C as a Single Catalyst. Molecules 2021; 26:molecules26195845. [PMID: 34641390 PMCID: PMC8510359 DOI: 10.3390/molecules26195845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022] Open
Abstract
Our previous work established a continuous-flow synthesis of pristane, which is a saturated branched alkane obtained from a Basking Shark. The dehydration of an allylic alcohol that is the key to a tetraene was carried out using a packed-bed reactor charged by an acid–silica catalyst (HO-SAS) and flow hydrogenation using molecular hydrogen via a Pd/C catalyst followed. The present work relies on the additional propensity of Pd/C to serve as an acid catalyst, which allows us to perform a flow synthesis of pristane from the aforementioned key allylic alcohol in the presence of molecular hydrogen using Pd/C as a single catalyst, which is applied to both dehydration and hydrogenation. The present one-column-two-reaction-flow system could eliminate the use of an acid catalyst such as HO-SAS and lead to a significant simplification of the production process.
Collapse
|
16
|
Sommer F, Cantillo D, Kappe CO. A small footprint oxycodone generator based on continuous flow technology and real-time analytics. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00193-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Salique F, Musina A, Winter M, Yann N, Roth PMC. Continuous Hydrogenation: Triphasic System Optimization at Kilo Lab Scale Using a Slurry Solution. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.701910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Despite their widespread use in the chemical industries, hydrogenation reactions remain challenging. Indeed, the nature of reagents and catalysts induce intrinsic safety challenges, in addition to demanding process development involving a 3-phase system. Here, to address common issues, we describe a successful process intensification study using a meso-scale flow reactor applied to a hydrogenation reaction of ethyl cinnamate at kilo lab scale with heterogeneous catalysis. This method relies on the continuous pumping of a catalyst slurry, delivering fresh catalyst through a structured flow reactor in a continuous fashion and a throughput up to 54.7 g/h, complete conversion and yields up to 99%. This article describes the screening of equipment, reactions conditions and uses statistical analysis methods (Monte Carlo/DoE) to improve the system further and to draw conclusions on the key influential parameters (temperature and residence time).
Collapse
|
18
|
Lebl R, Bachmann S, Tosatti P, Sedelmeier J, Püntener K, Williams JD, Kappe CO. Catalytic Static Mixer-Enabled Hydrogenation of a Key Fenebrutinib Intermediate: Real-Time Analysis for a Stable and Scalable Process. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- René Lebl
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, Graz 8010, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz 8010, Austria
| | - Stephan Bachmann
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Paolo Tosatti
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Joerg Sedelmeier
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Kurt Püntener
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Jason D. Williams
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, Graz 8010, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz 8010, Austria
| | - C. Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, Graz 8010, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz 8010, Austria
| |
Collapse
|
19
|
Gambacorta G, Sharley JS, Baxendale IR. A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein J Org Chem 2021; 17:1181-1312. [PMID: 34136010 PMCID: PMC8182698 DOI: 10.3762/bjoc.17.90] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Due to their intrinsic physical properties, which includes being able to perform as volatile liquids at room and biological temperatures, fragrance ingredients/intermediates make ideal candidates for continuous-flow manufacturing. This review highlights the potential crossover between a multibillion dollar industry and the flourishing sub-field of flow chemistry evolving within the discipline of organic synthesis. This is illustrated through selected examples of industrially important transformations specific to the fragrances and flavours industry and by highlighting the advantages of conducting these transformations by using a flow approach. This review is designed to be a compendium of techniques and apparatus already published in the chemical and engineering literature which would constitute a known solution or inspiration for commonly encountered procedures in the manufacture of fragrance and flavour chemicals.
Collapse
Affiliation(s)
- Guido Gambacorta
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - James S Sharley
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - Ian R Baxendale
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
20
|
Sagmeister P, Lebl R, Castillo I, Rehrl J, Kruisz J, Sipek M, Horn M, Sacher S, Cantillo D, Williams JD, Kappe CO. Advanced Real-Time Process Analytics for Multistep Synthesis in Continuous Flow*. Angew Chem Int Ed Engl 2021; 60:8139-8148. [PMID: 33433918 PMCID: PMC8048486 DOI: 10.1002/anie.202016007] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 12/28/2022]
Abstract
In multistep continuous flow chemistry, studying complex reaction mixtures in real time is a significant challenge, but provides an opportunity to enhance reaction understanding and control. We report the integration of four complementary process analytical technology tools (NMR, UV/Vis, IR and UHPLC) in the multistep synthesis of an active pharmaceutical ingredient, mesalazine. This synthetic route exploits flow processing for nitration, high temperature hydrolysis and hydrogenation reactions, as well as three inline separations. Advanced data analysis models were developed (indirect hard modeling, deep learning and partial least squares regression), to quantify the desired products, intermediates and impurities in real time, at multiple points along the synthetic pathway. The capabilities of the system have been demonstrated by operating both steady state and dynamic experiments and represents a significant step forward in data-driven continuous flow synthesis.
Collapse
Affiliation(s)
- Peter Sagmeister
- Center for Continuous Flow Synthesis and Processing (CCFLOW)Research Center Pharmaceutical Engineering GmbH (RCPE)Inffeldgasse 138010GrazAustria
- Institute of ChemistryUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - René Lebl
- Center for Continuous Flow Synthesis and Processing (CCFLOW)Research Center Pharmaceutical Engineering GmbH (RCPE)Inffeldgasse 138010GrazAustria
- Institute of ChemistryUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Ismael Castillo
- Institute of Automation and ControlGraz University of TechnologyInffeldgasse 21b8010GrazAustria
| | - Jakob Rehrl
- Research Center Pharmaceutical Engineering (RCPE)Inffeldgasse 138010GrazAustria
| | - Julia Kruisz
- Research Center Pharmaceutical Engineering (RCPE)Inffeldgasse 138010GrazAustria
| | - Martin Sipek
- Evon GmbHWollsdorf 1548181St. Ruprecht a. d. RaabAustria
| | - Martin Horn
- Institute of Automation and ControlGraz University of TechnologyInffeldgasse 21b8010GrazAustria
| | - Stephan Sacher
- Research Center Pharmaceutical Engineering (RCPE)Inffeldgasse 138010GrazAustria
| | - David Cantillo
- Center for Continuous Flow Synthesis and Processing (CCFLOW)Research Center Pharmaceutical Engineering GmbH (RCPE)Inffeldgasse 138010GrazAustria
- Institute of ChemistryUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - Jason D. Williams
- Center for Continuous Flow Synthesis and Processing (CCFLOW)Research Center Pharmaceutical Engineering GmbH (RCPE)Inffeldgasse 138010GrazAustria
- Institute of ChemistryUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| | - C. Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CCFLOW)Research Center Pharmaceutical Engineering GmbH (RCPE)Inffeldgasse 138010GrazAustria
- Institute of ChemistryUniversity of Graz, NAWI GrazHeinrichstrasse 288010GrazAustria
| |
Collapse
|
21
|
Zhu Y, Bin Mohamad Sultan B, Nguyen X, Hornung C. Performance study and comparison between catalytic static mixer and packed bed in heterogeneous hydrogenation of vinyl acetate. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00152-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Sagmeister P, Lebl R, Castillo I, Rehrl J, Kruisz J, Sipek M, Horn M, Sacher S, Cantillo D, Williams JD, Kappe CO. Advanced Real‐Time Process Analytics for Multistep Synthesis in Continuous Flow**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Peter Sagmeister
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
- Institute of Chemistry University of Graz, NAWI Graz Heinrichstrasse 28 8010 Graz Austria
| | - René Lebl
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
- Institute of Chemistry University of Graz, NAWI Graz Heinrichstrasse 28 8010 Graz Austria
| | - Ismael Castillo
- Institute of Automation and Control Graz University of Technology Inffeldgasse 21b 8010 Graz Austria
| | - Jakob Rehrl
- Research Center Pharmaceutical Engineering (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - Julia Kruisz
- Research Center Pharmaceutical Engineering (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - Martin Sipek
- Evon GmbH Wollsdorf 154 8181 St. Ruprecht a. d. Raab Austria
| | - Martin Horn
- Institute of Automation and Control Graz University of Technology Inffeldgasse 21b 8010 Graz Austria
| | - Stephan Sacher
- Research Center Pharmaceutical Engineering (RCPE) Inffeldgasse 13 8010 Graz Austria
| | - David Cantillo
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
- Institute of Chemistry University of Graz, NAWI Graz Heinrichstrasse 28 8010 Graz Austria
| | - Jason D. Williams
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
- Institute of Chemistry University of Graz, NAWI Graz Heinrichstrasse 28 8010 Graz Austria
| | - C. Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CCFLOW) Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 8010 Graz Austria
- Institute of Chemistry University of Graz, NAWI Graz Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
23
|
Kundra M, Grall T, Ng D, Xie Z, Hornung CH. Continuous Flow Hydrogenation of Flavorings and Fragrances Using 3D-Printed Catalytic Static Mixers. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05671] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Milan Kundra
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Tom Grall
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Derrick Ng
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Zongli Xie
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | | |
Collapse
|
24
|
Neyt NC, Riley DL. Application of reactor engineering concepts in continuous flow chemistry: a review. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00004g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The adoption of flow technology for the manufacture of chemical entities, and in particular pharmaceuticals, has seen rapid growth over the past two decades with the technology now blurring the lines between chemistry and chemical engineering.
Collapse
Affiliation(s)
- Nicole C. Neyt
- Faculty of Natural and Agricultural Sciences
- Department of Chemistry
- University of Pretoria
- South Africa
| | - Darren L. Riley
- Faculty of Natural and Agricultural Sciences
- Department of Chemistry
- University of Pretoria
- South Africa
| |
Collapse
|
25
|
Bogdan E, Michorczyk P. 3D Printing in Heterogeneous Catalysis-The State of the Art. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4534. [PMID: 33066083 PMCID: PMC7601972 DOI: 10.3390/ma13204534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
Abstract
This paper describes the process of additive manufacturing and a selection of three-dimensional (3D) printing methods which have applications in chemical synthesis, specifically for the production of monolithic catalysts. A review was conducted on reference literature for 3D printing applications in the field of catalysis. It was proven that 3D printing is a promising production method for catalysts.
Collapse
Affiliation(s)
- Elżbieta Bogdan
- Institute of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| | | |
Collapse
|
26
|
Yu T, Jiao J, Song P, Nie W, Yi C, Zhang Q, Li P. Recent Progress in Continuous-Flow Hydrogenation. CHEMSUSCHEM 2020; 13:2876-2893. [PMID: 32301233 DOI: 10.1002/cssc.202000778] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 06/11/2023]
Abstract
To achieve a safe, efficient, and sustainable (even fully automated) production for the continuous-flow hydrogenation reactions, which is among the most often used reactions in chemical synthesis, new catalyst types and immobilization methods as well as flow reactors and technologies have been developed over the last years; in addition, these approaches have been combined with new and transformational technologies in other fields such as artificial intelligence. Thus, attention from academic and industry practitioners has increasingly focused on improving the performance of hydrogenation in flow mode by reducing the reaction times, increasing selectivities, and achieve safe operation. This Minireview aims to summarize the most recent research results on this topic with focus on the advantages, current limitations, and future directions of flow chemistry.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jiao Jiao
- Departement of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peidong Song
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Wenzheng Nie
- Departement of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Chunhai Yi
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Pengfei Li
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
27
|
Shanmugaraj K, Bustamante TM, Campos CH, Torres CC. Liquid Phase Hydrogenation of Pharmaceutical Interest Nitroarenes over Gold-Supported Alumina Nanowires Catalysts. MATERIALS 2020; 13:ma13040925. [PMID: 32093015 PMCID: PMC7078662 DOI: 10.3390/ma13040925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/23/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022]
Abstract
In this work, Au nanoparticles, supported in Al2O3 nanowires (ANW) modified with (3-aminopropyl)trimethoxysilane were synthetized, for their use as catalysts in the hydrogenation reaction of 4-(2-fluoro-4-nitrophenyl)-morpholine and 4-(4-nitrophenyl)morpholin-3-one. ANW was obtained by hydrothermal techniques and the metal was incorporated by the reduction of the precursor with NaBH4 posterior to superficial modification. The catalysts were prepared at different metal loadings and were characterized by different techniques. The characterization revealed structured materials in the form of nanowires and a successful superficial modification. All catalysts show that Au is in a reduced state and the shape of the nanoparticles is spherical, with high metal dispersion and size distributions from 3.7 to 4.6 nm. The different systems supported in modified-ANW were active and selective in the hydrogenation reaction of both substrates, finding for all catalytic systems a selectivity of almost 100% to the aromatic amine. Catalytic data showed pseudo first-order kinetics with respect to the substrate for all experimental conditions used in this work. The solvent plays an important role in the activity and selectivity of the catalyst, where the highest efficiency and operational stability was achieved when ethanol was used as the solvent.
Collapse
Affiliation(s)
- Krishnamoorthy Shanmugaraj
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile; (K.S.); (T.M.B.); (C.H.C.)
| | - Tatiana M. Bustamante
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile; (K.S.); (T.M.B.); (C.H.C.)
| | - Cristian H. Campos
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile; (K.S.); (T.M.B.); (C.H.C.)
| | - Cecilia C. Torres
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano 7100, Talcahuano 4300866, Chile
- Correspondence: ; Tel.: +56-41-2662151
| |
Collapse
|
28
|
Goyal V, Gahtori J, Narani A, Gupta P, Bordoloi A, Natte K. Commercial Pd/C-Catalyzed N-Methylation of Nitroarenes and Amines Using Methanol as Both C1 and H2 Source. J Org Chem 2019; 84:15389-15398. [DOI: 10.1021/acs.joc.9b02141] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Vishakha Goyal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Jyoti Gahtori
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Anand Narani
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | | | - Ankur Bordoloi
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Kishore Natte
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
29
|
Rode HB, Lade DM, Grée R, Mainkar PS, Chandrasekhar S. Strategies towards the synthesis of anti-tuberculosis drugs. Org Biomol Chem 2019; 17:5428-5459. [DOI: 10.1039/c9ob00817a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this report, we reviewed the strategies towards the synthesis of anti-tuberculosis drugs. They include semisynthetic approaches, resolution based strategies, microbial transformations, solid phase synthesis, and asymmetric synthesis.
Collapse
Affiliation(s)
- Haridas B. Rode
- Department of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Dhanaji M. Lade
- Department of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - René Grée
- University of Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes)
- UMR 6226
- F-35000 Rennes
| | - Prathama S. Mainkar
- Department of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|