1
|
Reshuffle Bonds by Ball Milling: A Mechanochemical Protocol for Charge-Accelerated Aza-Claisen Rearrangements. Molecules 2023; 28:molecules28020807. [PMID: 36677865 PMCID: PMC9860570 DOI: 10.3390/molecules28020807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
This study presents the development of a mechanochemical protocol for a charge-accelerated aza-Claisen rearrangement. The protocol waives the use of commonly applied transition metals, ligands, or pyrophoric Lewis acids, e.g., AlMe3. Based on (heterocyclic) tertiary allylamines and acyl chlorides, the desired tertiary amides were prepared in yields ranging from 17% to 84%. Moreover, the same protocol was applied for a Belluš-Claisen-type rearrangement resulting in the synthesis of a 9-membered lactam without further optimization.
Collapse
|
2
|
Grillo G, Cintas P, Colia M, Calcio Gaudino E, Cravotto G. Process intensification in continuous flow organic synthesis with enabling and hybrid technologies. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.966451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Industrial organic synthesis is time and energy consuming, and generates substantial waste. Traditional conductive heating and mixing in batch reactors is no longer competitive with continuous-flow synthetic methods and enabling technologies that can strongly promote reaction kinetics. These advances lead to faster and simplified downstream processes with easier workup, purification and process scale-up. In the current Industry 4.0 revolution, new advances that are based on cyber-physical systems and artificial intelligence will be able to optimize and invigorate synthetic processes by connecting cascade reactors with continuous in-line monitoring and even predict solutions in case of unforeseen events. Alternative energy sources, such as dielectric and ohmic heating, ultrasound, hydrodynamic cavitation, reactive extruders and plasma have revolutionized standard procedures. So-called hybrid or hyphenated techniques, where the combination of two different energy sources often generates synergistic effects, are also worthy of mention. Herein, we report our consolidated experience of all of these alternative techniques.
Collapse
|
3
|
Domański M, Žurauskas J, Barham JP. Tunable Microwave Flow System for Scalable Synthesis of Alkyl Imidazolium-type Ionic Liquids. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michał Domański
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, Regensburg 93040, Germany
| | - Jonas Žurauskas
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, Regensburg 93040, Germany
| | - Joshua P. Barham
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, Regensburg 93040, Germany
| |
Collapse
|
4
|
Cao L, Kim HW, Jeong YJ, Han SC, Park JK. Rapid Continuous-Flow Water-Free Synthesis of Ultrapure Ionic Liquids Assisted by Microwaves. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Cao
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Hong Won Kim
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Yu Jin Jeong
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Seung Chang Han
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Jin Kyoon Park
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
5
|
Gambacorta G, Sharley JS, Baxendale IR. A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein J Org Chem 2021; 17:1181-1312. [PMID: 34136010 PMCID: PMC8182698 DOI: 10.3762/bjoc.17.90] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Due to their intrinsic physical properties, which includes being able to perform as volatile liquids at room and biological temperatures, fragrance ingredients/intermediates make ideal candidates for continuous-flow manufacturing. This review highlights the potential crossover between a multibillion dollar industry and the flourishing sub-field of flow chemistry evolving within the discipline of organic synthesis. This is illustrated through selected examples of industrially important transformations specific to the fragrances and flavours industry and by highlighting the advantages of conducting these transformations by using a flow approach. This review is designed to be a compendium of techniques and apparatus already published in the chemical and engineering literature which would constitute a known solution or inspiration for commonly encountered procedures in the manufacture of fragrance and flavour chemicals.
Collapse
Affiliation(s)
- Guido Gambacorta
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - James S Sharley
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - Ian R Baxendale
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
6
|
Neyt NC, Riley DL. Application of reactor engineering concepts in continuous flow chemistry: a review. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00004g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The adoption of flow technology for the manufacture of chemical entities, and in particular pharmaceuticals, has seen rapid growth over the past two decades with the technology now blurring the lines between chemistry and chemical engineering.
Collapse
Affiliation(s)
- Nicole C. Neyt
- Faculty of Natural and Agricultural Sciences
- Department of Chemistry
- University of Pretoria
- South Africa
| | - Darren L. Riley
- Faculty of Natural and Agricultural Sciences
- Department of Chemistry
- University of Pretoria
- South Africa
| |
Collapse
|
7
|
Khademi Z, Nikoofar K. Applications of alkyl orthoesters as valuable substrates in organic transformations, focusing on reaction media. RSC Adv 2020; 10:30314-30397. [PMID: 35559005 PMCID: PMC9092620 DOI: 10.1039/d0ra05276k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/27/2020] [Indexed: 02/01/2023] Open
Abstract
In this review we focus on applications of alkyl orthoesters as valuable and efficient substrates to perform various classes of two-component and multi-component organic reactions. The article has classified them according to two aspects, which are: (i) a focus on the reaction medium (solvent-free conditions, aqueous media, and organic solvents); and (ii) an examination of product structures. Reaction accomplishment under solvent-free conditions is an eco-friendly process with the absence of volatile toxic solvents, which puts it in line with green chemistry goals. Water is an interesting choice in organic transformations due to its inexpensiveness and safety. The authors hope their assessment will help chemists to attain new approaches for utilizing alkyl orthoesters in various organic synthetic methods. The review covers the corresponding literature up to the beginning of 2020.
Collapse
Affiliation(s)
- Zahra Khademi
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University P.O. Box 1993891176 Tehran Iran +982188041344 +982188041344
| | - Kobra Nikoofar
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University P.O. Box 1993891176 Tehran Iran +982188041344 +982188041344
| |
Collapse
|
8
|
Hui Z, Jiang S, Qi X, Ye XY, Xie T. Investigating the microwave-accelerated Claisen rearrangement of allyl aryl ethers: Scope of the catalysts, solvents, temperatures, and substrates. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Development of large-scale oxidative Bromination with HBr-DMSO by using a continuous-flow microwave system for the subsequent synthesis of 4-Methoxy-2-methyldiphenylamine. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00094-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Ghosh M, Jain K, Khan S, Das K, Ghorai TK. New Dual-Functional and Reusable Bimetallic Y 2ZnO 4 Nanocatalyst for Organic Transformation under Microwave/Green Conditions. ACS OMEGA 2020; 5:4973-4981. [PMID: 32201783 PMCID: PMC7081418 DOI: 10.1021/acsomega.9b03875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
A novel bimetallic and reusable Y2ZnO4 nanocatalyst was synthesized by a simple coprecipitation method. The prepared nanocatalyst exhibited dual catalytic activity and was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). The average crystallite and grain sizes were found to be 17 ± 1 and 10 ± 2 nm, respectively. On the one hand, the catalytic activity of the nanocatalyst was studied for the Knoevenagel condensation reaction of aromatic aldehydes with active methylene compounds, such as ethyl cyanoacetate and malononitrile, under microwave irradiation and solvent-free conditions. On the other hand, the nanoparticles also showed faster photocatalytic activity against methyl orange (MO) compared to other dyes. The nanocatalyst was easily recoverable by a simple filtration method and was recycled without any significant loss of catalytic activity. The advantages of this nanocatalyst were a simple workup procedure, high reaction yields, solvent-free conditions, reusability, and a short reaction time under green reaction conditions.
Collapse
Affiliation(s)
- Mithun
Kumar Ghosh
- Nanomaterials
and Crystal Designing Laboratory, Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| | - Kavita Jain
- Advanced
Organic Synthesis Laboratory, Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (Central University), Sagar 470003, Madhya Pradesh, India
| | - Siddique Khan
- Advanced
Organic Synthesis Laboratory, Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (Central University), Sagar 470003, Madhya Pradesh, India
| | - Kalpataru Das
- Advanced
Organic Synthesis Laboratory, Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (Central University), Sagar 470003, Madhya Pradesh, India
| | - Tanmay Kumar Ghorai
- Nanomaterials
and Crystal Designing Laboratory, Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| |
Collapse
|
11
|
Al‐Zoubi RM, Al‐Jammal WK, McDonald R. Microwave‐Assisted/Pd‐Catalyzed Domino Synthesis of 2,3,4‐Triiodoanisole from 3‐Anisic Acid: A Superior Substrate for Regioselective Synthesis of 2,3‐Diiodobiphenyls. ChemistrySelect 2020. [DOI: 10.1002/slct.202000164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Raed M. Al‐Zoubi
- Department of ChemistryJordan University of Science and Technology, P.O.Box 3030 Irbid 22110 Jordan
| | - Walid K. Al‐Jammal
- Department of ChemistryJordan University of Science and Technology, P.O.Box 3030 Irbid 22110 Jordan
| | - Robert McDonald
- Department of Chemistry, Gunning-Lemieux Chemistry CentreUniversity of Alberta, Edmonton Alberta T6G2G2 Canada
| |
Collapse
|
12
|
Noshita M, Shimizu Y, Morimoto H, Akai S, Hamashima Y, Ohneda N, Odajima H, Ohshima T. Ammonium Salt-Accelerated Hydrazinolysis of Unactivated Amides: Mechanistic Investigation and Application to a Microwave Flow Process. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Megumi Noshita
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuhei Shimizu
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita 567-0871, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Noriyuki Ohneda
- SAIDA FDS Inc., 143-10 Isshiki, Yaizu, Shizuoka 425-0054, Japan
| | - Hiromichi Odajima
- Pacific Microwave Technologies Corp., Seattle, Washington 98116, United States
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
13
|
Odajima H, Okamoto T. Effective Application of Microwave Resonant Cavity System to Flow Chemistry. CHEM REC 2019; 19:204-211. [DOI: 10.1002/tcr.201800087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Hiromichi Odajima
- Pacific Microwave Technologies Corporation 4526 53rd Ave. SW Seattle WA98116 USA
- 227-0066 2-13-18 Akanedai, Aoba-ku Yokohama-city, Kanagawa Japan
| | - Tadashi Okamoto
- Pacific Microwave Technologies Corporation 4526 53rd Ave. SW Seattle WA98116 USA
- 223-0061 2-10-14 Hiyoshi, Kouhoku-ku Yokohama-city, Kanagawa Japan
| |
Collapse
|
14
|
Egami H, Hamashima Y. Practical and Scalable Organic Reactions with Flow Microwave Apparatus. CHEM REC 2018; 19:157-171. [PMID: 30511806 DOI: 10.1002/tcr.201800132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/12/2018] [Indexed: 01/01/2023]
Abstract
Microwave irradiation has been used for accelerating organic reactions as a heating method and has been proven to be useful in laboratory scale organic synthesis. The major drawback of microwave chemistry is the difficulty in scaling up, mainly because of the low penetration depth of microwaves. The combination of microwave chemistry and flow chemistry is considered to overcome the problem in scaling up of microwave-assisted organic reactions, and some flow microwave systems have been developed in both academic and industrial communities. In this context, we have demonstrated the scale-up of fundamental organic reactions using a novel flow microwave system developed by the academic-industrial alliance between the University of Shizuoka, Advanced Industrial Science and Technology, and SAIDA FDS. In this Personal Account, we summarize the recent progress of our scalable microwave-assisted continuous synthesis using the SAIDA flow microwave apparatus.
Collapse
Affiliation(s)
- Hiromichi Egami
- School of Pharmaceutical Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
15
|
Barham JP, Koyama E, Norikane Y, Ohneda N, Yoshimura T. Microwave Flow: A Perspective on Reactor and Microwave Configurations and the Emergence of Tunable Single‐Mode Heating Toward Large‐Scale Applications. CHEM REC 2018; 19:188-203. [DOI: 10.1002/tcr.201800104] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/17/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Joshua P. Barham
- Electronics and Photonics Research InstituteNational Institute of Advanced Industrial Science and Technology Tsukuba Central 5, 1-1-1 Higashi Tsukuba, Ibaraki 305-8568 Japan
| | - Emiko Koyama
- Electronics and Photonics Research InstituteNational Institute of Advanced Industrial Science and Technology Tsukuba Central 5, 1-1-1 Higashi Tsukuba, Ibaraki 305-8568 Japan
| | - Yasuo Norikane
- Electronics and Photonics Research InstituteNational Institute of Advanced Industrial Science and Technology Tsukuba Central 5, 1-1-1 Higashi Tsukuba, Ibaraki 305-8568 Japan
| | - Noriyuki Ohneda
- SAIDA FDS, INC. 143-10 Isshiki Yaizu, Shizuoka 425-0054 Japan
| | - Takeo Yoshimura
- SAIDA FDS, INC. 143-10 Isshiki Yaizu, Shizuoka 425-0054 Japan
| |
Collapse
|
16
|
Koyama E, Ito N, Sugiyama JI, Barham JP, Norikane Y, Azumi R, Ohneda N, Ohno Y, Yoshimura T, Odajima H, Okamoto T. A continuous-flow resonator-type microwave reactor for high-efficiency organic synthesis and Claisen rearrangement as a model reaction. J Flow Chem 2018. [DOI: 10.1007/s41981-018-0021-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Sugiyama J. Electromagnetic Relationship between Microwaves and Flow Reactor Systems. CHEM REC 2018; 19:146-156. [DOI: 10.1002/tcr.201800120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/07/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Jun‐ichi Sugiyama
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba, Ibaraki 305-8568 Japan
| |
Collapse
|
18
|
Barham JP, Tamaoki S, Egami H, Ohneda N, Okamoto T, Odajima H, Hamashima Y. C-Alkylation of N-alkylamides with styrenes in air and scale-up using a microwave flow reactor. Org Biomol Chem 2018; 16:7568-7573. [DOI: 10.1039/c8ob02282h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C-Alkylation of N-alkylamides with styrenes is reported, proceeding in ambient air/moisture to give arylbutanamides and other pharmaceutically-relevant scaffolds in excellent mass balance.
Collapse
Affiliation(s)
- Joshua P. Barham
- School of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka
- Japan
- SAIDA FDS INC. 143-10
| | - Souma Tamaoki
- School of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka
- Japan
| | - Hiromichi Egami
- School of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka
- Japan
| | | | | | | | | |
Collapse
|