1
|
Arif M. A Critical Review of Palladium Nanoparticles Decorated in Smart Microgels. Polymers (Basel) 2023; 15:3600. [PMID: 37688226 PMCID: PMC10490228 DOI: 10.3390/polym15173600] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Palladium nanoparticles (Pd) combined with smart polymer microgels have attracted significant interest in the past decade. These hybrid materials have unique properties that make them appealing for various applications in biology, environmental remediation, and catalysis. The responsive nature of the microgels in these hybrids holds great promise for a wide range of applications. The literature contains diverse morphologies and architectures of Pd nanoparticle-based hybrid microgels, and the architecture of these hybrids plays a vital role in determining their potential uses. Therefore, specific Pd nanoparticle-based hybrid microgels are designed for specific applications. This report provides an overview of recent advancements in the classification, synthesis, properties, characterization, and uses of Pd nanostructures loaded into microgels. Additionally, the report discusses the latest progress in biomedical, catalytic, environmental, and sensing applications of Pd-based hybrid microgels in a tutorial manner.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| |
Collapse
|
2
|
A tutorial review on bimetallic nanoparticles loaded in smart organic polymer microgels/hydrogels. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
3
|
Nazar de Souza AP, de Souza Tomaso LP, S. da Silva VA, S. da Silva GF, Santos ECS, de S. Baêta E, Brant de Campos J, Carvalho NMF, Malta LFB, Senra JD. Mild and Rapid Light-Driven Suzuki-Miyaura Reactions Catalyzed by AuPd Nanoparticles in Water at Room Temperature. Chemistry 2022; 11:e202200177. [PMID: 36457181 PMCID: PMC9716040 DOI: 10.1002/open.202200177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/30/2022] [Indexed: 12/03/2022]
Abstract
Organic reactions carried out in water under mild conditions are state-of-the-art in terms of environmentally benign chemical processes. In this direction, plasmonic catalysis can aid in accomplishing such tasks. In the present work, cyclodextrin-mediated AuPd bimetallic nanoparticles (NPs) were applied in room-temperature aqueous Suzuki-Miyaura reactions aiming at preparing biaryl products based on fluorene, isatin, benzimidazole and resorcinol, with yields of 77 % up to 95 %. AuPd NPs were revealed to be a physical mixture of Au and Pd particles circa 20 and 2 nm, respectively, through X-ray diffraction, dynamic light scattering, UV-Vis spectroscopy and transmission electron microscopy analyses.
Collapse
Affiliation(s)
| | | | | | | | - Evelyn C. S. Santos
- Instituto de QuímicaUniversidade Federal do Rio de JaneiroRio de Janeiro21941-909Brazil,Centro Brasileiro de Pesquisas FísicasRio de Janeiro22290-180Brazil
| | - Eustáquio de S. Baêta
- Departamento de Engenharia MecânicaUniversidade do Estado doRio de Janeiro20940-200Brazil
| | - José Brant de Campos
- Departamento de Engenharia MecânicaUniversidade do Estado doRio de Janeiro20940-200Brazil
| | - Nakédia M. F. Carvalho
- Instituto de QuímicaUniversidade do Estado do Rio de JaneiroRio de Janeiro20550-900Brazil
| | | | - Jaqueline D. Senra
- Instituto de QuímicaUniversidade do Estado do Rio de JaneiroRio de Janeiro20550-900Brazil
| |
Collapse
|
4
|
Abusuek DA, Tkachenko OP, Bykov AV, Sidorov AI, Matveeva VG, Sulman MG, Nikoshvili LZ. ZSM-5 as a support for Ru-containing catalysts of levulinic acid hydrogenation: Influence of the reaction conditions and the zeolite acidity. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Sharma AK, Mehara P, Das P. Recent Advances in Supported Bimetallic Pd–Au Catalysts: Development and Applications in Organic Synthesis with Focused Catalytic Action Study. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ajay Kumar Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pushkar Mehara
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pralay Das
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Aalinejad M, Pesyan Noroozi N, Alamgholiloo H. Stabilization of Pd–Ni alloy nanoparticles on Kryptofix 23 modified SBA-15 for catalytic enhancement. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Nikoshvili LZ, Shkerina KN, Bykov AV, Sidorov AI, Vasiliev AL, Sulman MG, Kiwi-Minsker L. Mono- and Bimetallic Nanoparticles Stabilized by an Aromatic Polymeric Network for a Suzuki Cross-Coupling Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:94. [PMID: 35010048 PMCID: PMC8746394 DOI: 10.3390/nano12010094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
This work addresses the Suzuki cross-coupling between 4-bromoanisole (BrAn) and phenylboronic acid (PBA) in an environmentally benign ethanol-water solvent catalysed by mono- (Pd) and bimetallic (PdAu, PdCu, PdZn) nanoparticles (NPs) stabilised within hyper-cross-linked polystyrene (HPS) bearing tertiary amino groups. Small Pd NPs of about 2 nm in diameters were formed and stabilized by HPS independently in the presence of other metals. High catalytic activity and complete conversion of BrAn was attained at low Pd loading. Introduction of Zn to the catalyst composition resulted in the formation of Pd/Zn/ZnO NPs, which demonstrated nearly double activity as compared to Pd/HPS. Bimetallic core-shell PdAu/HPS samples were 3-fold more active as compared to Pd/HPS. Both Pd/HPS and PdAu/HPS samples revealed promising stability confirmed by catalyst recycling in repeated reaction runs.
Collapse
Affiliation(s)
- Linda Zh. Nikoshvili
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, Afanasy Nikitina Street 22, 170026 Tver, Russia; (K.N.S.); (A.V.B.); (A.I.S.); (M.G.S.)
| | - Kristina N. Shkerina
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, Afanasy Nikitina Street 22, 170026 Tver, Russia; (K.N.S.); (A.V.B.); (A.I.S.); (M.G.S.)
| | - Alexey V. Bykov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, Afanasy Nikitina Street 22, 170026 Tver, Russia; (K.N.S.); (A.V.B.); (A.I.S.); (M.G.S.)
| | - Alexander I. Sidorov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, Afanasy Nikitina Street 22, 170026 Tver, Russia; (K.N.S.); (A.V.B.); (A.I.S.); (M.G.S.)
| | - Alexander L. Vasiliev
- National Research Centre “Kurchatov Institute”, Kurchatov Square 1, 123182 Moscow, Russia;
- Institute of Crystallography of the Russian Academy of Sciences, Leninsky Prospekt 59, 117333 Moscow, Russia
| | - Mikhail G. Sulman
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, Afanasy Nikitina Street 22, 170026 Tver, Russia; (K.N.S.); (A.V.B.); (A.I.S.); (M.G.S.)
| | - Lioubov Kiwi-Minsker
- Regional Technological Centre, Tver State University, Zhelyabova Street 33, 170100 Tver, Russia
- Department of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, ISIC-FSB-EPFL, CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Kinetic Modeling for the “One-Pot” Hydrogenolysis of Cellulose to Glycols over Ru@Fe3O4/Polymer Catalyst. REACTIONS 2021. [DOI: 10.3390/reactions3010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Despite numerous works devoted to the cellulose hydrogenolysis process, only some of them describe reaction kinetics. This is explained by the complexity of the process and the simultaneous behavior of different reactions. In this work, we present the results of the kinetic study of glucose hydrogenolysis into ethylene- and propylene glycols in the presence of Ru@Fe3O4/HPS catalyst as a part of the process of catalytic conversion of cellulose into glycols. The structure of the Ru-containing magnetically separable Ru@Fe3O4/HPS catalysts supported on the polymeric matrix of hypercrosslinked polystyrene was studied to propose the reaction scheme. As a result of this study, a formal description of the glucose hydrogenolysis process into glycols was performed. Based on the data obtained, the mathematical model of the glucose hydrogenolysis kinetics in the presence of Ru@Fe3O4/HPS was developed and the parameter estimation was carried out. The synthesized catalyst was found to be characterized by the enhanced magnetic properties and higher catalytic activity in comparison with previously developed catalytic systems (i.e., on the base of SiO2). The summarized selectivity towards the glycols formation was found to be ca. 42% at 100% of the cellulose conversion in the presence of Ru@Fe3O4/HPS.
Collapse
|
9
|
Appa RM, Raghavendra P, Lakshmidevi J, Naidu BR, Sarma LS, Venkateswarlu K. Structure controlled Au@Pd NPs/rGO as robust heterogeneous catalyst for Suzuki coupling in biowaste‐derived water extract of pomegranate ash. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rama Moorthy Appa
- Laboratory for Synthetic and Natural Products Chemistry, Department of Chemistry Yogi Vemana University Kadapa 516005 India
| | - Padmasale Raghavendra
- Nanoelectrochemistry Laboratory, Department of Chemistry Yogi Vemana University Kadapa 516005 India
| | - Jangam Lakshmidevi
- Laboratory for Synthetic and Natural Products Chemistry, Department of Chemistry Yogi Vemana University Kadapa 516005 India
| | - Bandameeda Ramesh Naidu
- Laboratory for Synthetic and Natural Products Chemistry, Department of Chemistry Yogi Vemana University Kadapa 516005 India
| | - Loka Subramanyam Sarma
- Nanoelectrochemistry Laboratory, Department of Chemistry Yogi Vemana University Kadapa 516005 India
| | - Katta Venkateswarlu
- Laboratory for Synthetic and Natural Products Chemistry, Department of Chemistry Yogi Vemana University Kadapa 516005 India
| |
Collapse
|
10
|
Recent Progress in Plasmonic Hybrid Photocatalysis for CO2 Photoreduction and C–C Coupling Reactions. Catalysts 2021. [DOI: 10.3390/catal11020155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Plasmonic hybrid nanostructures have been investigated as attractive heterogeneous photocatalysts that can utilize sunlight to produce valuable chemicals. In particular, the efficient photoconversion of CO2 into a stable hydrocarbon with sunlight can be a promising strategy to achieve a sustainable human life on Earth. The next step for hydrocarbons once obtained from CO2 is the carbon–carbon coupling reactions to produce a valuable chemical for energy storage or fine chemicals. For these purposes, plasmonic nanomaterials have been widely investigated as a visible-light-induced photocatalyst to achieve increased efficiency of photochemical reactions with sunlight. In this review, we discuss recent achievements involving plasmonic hybrid photocatalysts that have been investigated for CO and CO2 photoreductions to form multi-carbon products and for C–C coupling reactions, such as the Suzuki–Miyaura coupling reactions.
Collapse
|
11
|
Rangasamy R, Lakshmi K, Selvaraj M. Synthesis of ultrafine AuPd bimetallic nanoparticles using a magnetite-cored poly(propyleneimine) dendrimer template and its sustainable catalysis of the Suzuki coupling reaction. NEW J CHEM 2021. [DOI: 10.1039/d1nj02914b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A rational synthesis of magnetically recyclable PPI dendrimer encapsulated AuPd bimetallic nanoparticle and its catalytic examination in the Suzuki coupling reaction.
Collapse
Affiliation(s)
- Rajmohan Rangasamy
- Department of Chemistry
- Guru Nanak College (Autonomous)
- Affiliated to University of Madras
- Chennai 600042
- India
| | - Kannappan Lakshmi
- Department of Chemistry
- Guru Nanak College (Autonomous)
- Affiliated to University of Madras
- Chennai 600042
- India
| | - Mari Selvaraj
- Associate Professor (Retd.), Department of Chemistry, Guru Nanak College (Autonomous)
- Chennai 600042
- India
| |
Collapse
|
12
|
Study of Deactivation in Suzuki Reaction of Polymer-Stabilized Pd Nanocatalysts. Processes (Basel) 2020. [DOI: 10.3390/pr8121653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This work is addressed to the phenomenon of catalyst deactivation taking place during the repeated uses in the reaction of Suzuki-Miyaura (S-M) cross-coupling, which is widely applied in industry for C-C bond formation. Ligandless catalysts based on Pd(0) NPs supported on hyper-cross-linked polystyrene (HPS) of two types (non-functionalized and bearing tertiary amino groups) were studied in a model S-M reaction between 4-bromoanisole and phenylboronic acid. Synthesized catalysts were shown to be highly active under mild reaction conditions. HPS allows stabilization of Pd(0) NPs and prevents their agglomeration and detectable Pd leaching. However, the loss of catalytic activity was observed during recycling. The deactivation issue was assigned to the hydrophobic nature of non-functionalized HPS, which allowed a strong adsorption of cross-coupling product during the catalyst separation procedure. A thorough washing of Pd/HPS catalyst by hydrophobic solvent was found to improve to the big extent the observed catalytic activity, while the replacement of non-functionalized HPS by a one containing amino groups increased the catalyst stability at the expense of their activity.
Collapse
|
13
|
Nasseri MA, Rezazadeh Z, Kazemnejadi M, Allahresani A. Cu-Mn Bimetallic Complex Immobilized on Magnetic NPs as an Efficient Catalyst for Domino One-Pot Preparation of Benzimidazole and Biginelli Reactions from Alcohols. Catal Letters 2020. [DOI: 10.1007/s10562-020-03371-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Cortes-Clerget M, Akporji N, Takale BS, Wood A, Landstrom E, Lipshutz BH. Earth-Abundant and Precious Metal Nanoparticle Catalysis. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Nasseri MA, Rezazadeh Z, Kazemnejadi M, Allahresani A. A Co–Cu bimetallic magnetic nanocatalyst with synergistic and bifunctional performance for the base-free Suzuki, Sonogashira, and C–N cross-coupling reactions in water. Dalton Trans 2020; 49:10645-10660. [DOI: 10.1039/d0dt01846e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A novel bimetallic catalytic system based on Cu/Co has been developed and used as an efficient, eco-friendly, and recyclable catalyst for base- and Pd-free Sonogashira, Suzuki and C–N cross-coupling reactions in mild reaction conditions.
Collapse
Affiliation(s)
| | - Zinat Rezazadeh
- Department of Chemistry
- Faculty of Sciences
- University of Birjand
- Birjand
- Iran
| | - Milad Kazemnejadi
- Department of Chemistry
- Faculty of Sciences
- University of Birjand
- Birjand
- Iran
| | - Ali Allahresani
- Department of Chemistry
- Faculty of Sciences
- University of Birjand
- Birjand
- Iran
| |
Collapse
|
16
|
Nijamudheen A, Datta A. Gold-Catalyzed Cross-Coupling Reactions: An Overview of Design Strategies, Mechanistic Studies, and Applications. Chemistry 2019; 26:1442-1487. [PMID: 31657487 DOI: 10.1002/chem.201903377] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Transition-metal-catalyzed cross-coupling reactions are central to many organic synthesis methodologies. Traditionally, Pd, Ni, Cu, and Fe catalysts are used to promote these reactions. Recently, many studies have showed that both homogeneous and heterogeneous Au catalysts can be used for activating selective cross-coupling reactions. Here, an overview of the past studies, current trends, and future directions in the field of gold-catalyzed coupling reactions is presented. Design strategies to accomplish selective homocoupling and cross-coupling reactions under both homogeneous and heterogeneous conditions, computational and experimental mechanistic studies, and their applications in diverse fields are critically reviewed. Specific topics covered are: oxidant-assisted and oxidant-free reactions; strain-assisted reactions; dual Au and photoredox catalysis; bimetallic synergistic reactions; mechanisms of reductive elimination processes; enzyme-mimicking Au chemistry; cluster and surface reactions; and plasmonic catalysis. In the relevant sections, theoretical and computational studies of AuI /AuIII chemistry are discussed and the predictions from the calculations are compared with the experimental observations to derive useful design strategies.
Collapse
Affiliation(s)
- A Nijamudheen
- School of Chemical Sciences, Indian Association for the, Cultivation of Sciences, 2A & 2B Raja S C Mullick Road, Kolkata, 700032, India.,Department of Chemical & Biomedical Engineering, Florida A&M University-Florida State University, Joint College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL, 32310, USA
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the, Cultivation of Sciences, 2A & 2B Raja S C Mullick Road, Kolkata, 700032, India
| |
Collapse
|
17
|
Gellé A, Jin T, de la Garza L, Price GD, Besteiro LV, Moores A. Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chem Rev 2019; 120:986-1041. [PMID: 31725267 DOI: 10.1021/acs.chemrev.9b00187] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Alexandra Gellé
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Tony Jin
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Luis de la Garza
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Gareth D. Price
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lucas V. Besteiro
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Audrey Moores
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
18
|
Shifrina ZB, Matveeva VG, Bronstein LM. Role of Polymer Structures in Catalysis by Transition Metal and Metal Oxide Nanoparticle Composites. Chem Rev 2019; 120:1350-1396. [DOI: 10.1021/acs.chemrev.9b00137] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, Moscow, 119991 Russia
| | - Valentina G. Matveeva
- Tver State Technical University, Department of Biotechnology and Chemistry, 22 A. Nikitina St, 170026 Tver, Russia
| | - Lyudmila M. Bronstein
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, Moscow, 119991 Russia
- Indiana University, Department of Chemistry, Bloomington, 800 East Kirkwood Avenue, Indiana 47405, United States
- King Abdulaziz University, Faculty of Science, Department of Physics, P.O. Box 80303, Jeddah 21589, Saudi Arabia
| |
Collapse
|
19
|
Rohani S, Ziarati A, Ziarani GM, Badiei A, Burgi T. Engineering of highly active Au/Pd supported on hydrogenated urchin-like yolk@shell TiO2 for visible light photocatalytic Suzuki coupling. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00798a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An engineered hydrogenated urchin-like yolk@shell TiO2 structure decorated with Au/Pd nanoparticles was designed via sequential steps and employed in visible light photocatalytic Suzuki coupling.
Collapse
Affiliation(s)
- Sahar Rohani
- Department of Chemistry
- Faculty of Science
- University of Alzahra
- Tehran
- Iran
| | - Abolfazl Ziarati
- Department of Physical Chemistry
- University of Geneva
- Geneva 4
- Switzerland
- School of Chemistry
| | | | - Alireza Badiei
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| | - Thomas Burgi
- Department of Physical Chemistry
- University of Geneva
- Geneva 4
- Switzerland
| |
Collapse
|