1
|
Beard J, Love SL, Schmitz JC, Hoskins AA, Koide K. Structure-Activity Relationship Study of Splicing Modulators on Hsh155/SF3B1 through Chemical Synthesis and Yeast Genetics. ACS Med Chem Lett 2024; 15:2225-2230. [PMID: 39691513 PMCID: PMC11647714 DOI: 10.1021/acsmedchemlett.4c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Meayamycins are synthetic analogs of the natural product FR901464 and exhibit potent anticancer activity against human cancers. They bind SF3B1 and PHF5A, components of the human spliceosome, and they alter pre-mRNA splicing. Detailed analysis of the active site led us to investigate a narrow pocket within the binding site that surrounds the α,β-unsaturated amide portion of meayamycin. We describe the synthesis and biological activity of two new analogs bearing a methyl substituent on the α or β position of the amide. With these analogs, we investigated the discrete interactions within the narrow region of SF3B1 using a human/yeast chimeric SF3B1 protein and found that the V1078 residue of SF3B1 affects compound binding at the amide moiety.
Collapse
Affiliation(s)
- Jacob
P. Beard
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Sierra L. Love
- Department
of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
- Genetics
Training Program, University of Wisconsin—Madison, 425 Henry Mall, Madison, Wisconsin 53706, United States
| | - John C. Schmitz
- Division
of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15232, United States
- Cancer
Therapeutics Program, UPMC Hillman Cancer
Center, 5117 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
| | - Aaron A. Hoskins
- Department
of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kazunori Koide
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Cancer
Therapeutics Program, UPMC Hillman Cancer
Center, 5117 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
| |
Collapse
|
2
|
Pohorilets I, Beard JP, Driscoll JL, Schmitz JC, Koide K. Synthesis and antiproliferative activity of a tetrahydrofuran analog of FR901464. Bioorg Med Chem Lett 2024; 104:129739. [PMID: 38599298 DOI: 10.1016/j.bmcl.2024.129739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
FR901464 is a natural product that exhibits antiproliferative activity at single-digit nanomolar concentrations in cancer cells. Its tetrahydropyran-spiroepoxide covalently binds the spliceosome. Through our medicinal chemistry campaign, we serendipitously discovered that a bromoetherification formed a tetrahydrofuran. The tetrahydrofuran analog was three orders of magnitude less potent than the corresponding tetrahydropyran analogs. This study shows the significance of the tetrahydropyran ring that presents the epoxide toward the spliceosome.
Collapse
Affiliation(s)
- Ivanna Pohorilets
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, PA 15260, United States
| | - Jacob P Beard
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, PA 15260, United States
| | - Julia L Driscoll
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, PA 15260, United States
| | - John C Schmitz
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine 5150 Centre Avenue, Pittsburgh, PA 15232, United States; Cancer Therapeutics Program, UPMC Hillman Cancer Center 5117 Centre Ave, Pittsburgh, PA 15232, United States
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh 219 Parkman Avenue, Pittsburgh, PA 15260, United States; Cancer Therapeutics Program, UPMC Hillman Cancer Center 5117 Centre Ave, Pittsburgh, PA 15232, United States.
| |
Collapse
|
3
|
Beard J, Bressin RK, Markaj PL, Schmitz JC, Koide K. Synthesis and Conformational Analysis of FR901464-Based RNA Splicing Modulators and Their Synergism in Drug-Resistant Cancers. J Med Chem 2023; 66:14497-14512. [PMID: 37870431 PMCID: PMC10641826 DOI: 10.1021/acs.jmedchem.3c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 10/24/2023]
Abstract
FR901464 is a cytotoxic natural product that binds splicing factor 3B subunit 1 (SF3B1) and PHD finger protein 5A (PHF5A), the components of the human spliceosome. The amide-containing tetrahydropyran ring binds SF3B1, and it remains unclear how the substituents on the ring contribute to the binding. Here, we synthesized meayamycin D, an analogue of FR901464, and three additional analogues to probe the conformation through methyl scanning. We discovered that the amide-containing tetrahydropyran ring assumes only one of the two possible chair conformations and that methylation of the nitrogen distorts the chair form, dramatically reducing cytotoxicity. Meayamycin D induced alternative splicing of MCL-1, showed strong synergism with venetoclax in drug-resistant lung cancer cells, and was cancer-specific over normal cells. Meayamycin D incorporates an alkyl ether and shows a long half-life in mouse plasma. The characteristics of meayamycin D may provide an approach to designing other bioactive L-shaped molecules.
Collapse
Affiliation(s)
- Jacob
P. Beard
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Robert K. Bressin
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Paulo L. Markaj
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - John C. Schmitz
- Division
of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15232, United States
- Cancer
Therapeutics Program, UPMC Hillman Cancer
Center, 5117 Centre Avenue, Pittsburgh, Pennsylvania 15232, United States
| | - Kazunori Koide
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Beard JP, Emerson JD, Jacobs AS, O'Grady AJ, Burrows J, Koide K. Improved Synthesis of the Amine Fragment of FR901464 and Thailanstatins through the Development of a Convenient N-Detosylation Method. J Org Chem 2022; 87:13416-13421. [PMID: 36153989 DOI: 10.1021/acs.joc.2c01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FR901464 and thailanstatins are potent cytotoxic natural products that share an amine-containing tetrahydropyran ring. We previously reported the synthesis of the tetrahydropyran component. Here, we changed the protecting group for the amine from Boc to tosyl, improving yields and the time economy. A highlight of the revised synthetic scheme is the use of lithium, t-butanol, and ethylenediamine in THF (nontraditional Birch reduction conditions) for the N-detosylation.
Collapse
Affiliation(s)
- Jacob P Beard
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Joseph D Emerson
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander S Jacobs
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Andrew J O'Grady
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - James Burrows
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Jänner S, Isak D, Li Y, Houk KN, Miller AK. Bioinspired Asymmetric Total Synthesis of Emeriones A–C**. Angew Chem Int Ed Engl 2022; 61:e202205878. [PMID: 35670768 PMCID: PMC9401028 DOI: 10.1002/anie.202205878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 01/10/2023]
Abstract
We report asymmetric bioinspired total syntheses of the fungal metabolites emeriones A–C via stereoselective oxidations of two bicyclo[4.2.0]octadiene diastereomers. The central bicyclic scaffolds are prepared in an 8π/6π electrocyclization cascade of a stereodefined pentaene, which contains the fully assembled side chains of the emeriones. The anti‐aldol side chain is made using a Paterson‐aldol addition, and the epoxide of the dioxabicyclo[3.1.0]hexane side chain via ring‐closure onto an oxidized acetal. Our work has enabled the structural revision of emerione C, and resulted in the synthesis of a “missing” family member, which we call emerione D. DFT calculations identified two methyl groups that govern torquoselectivity in the 8π/6π cascade.
Collapse
Affiliation(s)
- Sven Jänner
- Cancer Drug Development Group German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Daniel Isak
- Cancer Drug Development Group German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Yuli Li
- Department of Chemistry School of Science Tianjin University Tianjin China
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles, CA USA
| | - Aubry K. Miller
- Cancer Drug Development Group German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
6
|
Jänner S, Isak D, Li Y, Houk KN, Miller AK. Bioinspired Asymmetric Total Synthesis of Emeriones A–C. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sven Jänner
- German Cancer Research Centre: Deutsches Krebsforschungszentrum Cancer Drug Development GERMANY
| | - Daniel Isak
- German Cancer Research Centre: Deutsches Krebsforschungszentrum Cancer Drug Development GERMANY
| | - Yuli Li
- Tianjin University Department of Chemistry CHINA
| | - K. N. Houk
- UCLA: University of California Los Angeles Department of Chemistry and Biochemistry UNITED STATES
| | - Aubry Kern Miller
- German Cancer Research Center: Deutsches Krebsforschungszentrum Cancer Drug Development Im Neuenheimer Feld 280 69120 Heidelberg GERMANY
| |
Collapse
|
7
|
Bressin RK, Osman S, Pohorilets I, Basu U, Koide K. Total Synthesis of Meayamycin B. J Org Chem 2020; 85:4637-4647. [DOI: 10.1021/acs.joc.9b03370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Robert K. Bressin
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Sami Osman
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Ivanna Pohorilets
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Upamanyu Basu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|