1
|
Lee D, Molani F, Choe MS, Lee HS, Wee KR, Hwang S, Kim CH, Cho AE, Son HJ. Photocatalytic Conversion of CO 2 to Formate/CO by an (η 6- para-Cymene)Ru(II) Half-Metallocene Catalyst: Influence of Additives and TiO 2 Immobilization on the Catalytic Mechanism and Product Selectivity. Inorg Chem 2024; 63:11506-11522. [PMID: 38856726 DOI: 10.1021/acs.inorgchem.3c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The catalytic efficacy of the monobipyridyl (η6-para-Cymene)Ru(II) half-metallocene, [(p-Cym)Ru(bpy)Cl]+ was evaluated in both mixed homogeneous (dye + catalyst) and heterogeneous hybrid systems (dye/TiO2/Catalyst) for photochemical CO2 reduction. A series of homogeneous photolysis experiments revealed that the (p-Cym)Ru(II) catalyst engages in two competitive routes for CO2 reduction (CO2 to formate conversion via RuII-hydride vs CO2 to CO conversion through a RuII-COOH intermediate). The conversion activity and product selectivity were notably impacted by the pKa value and the concentration of the proton source added. When a more acidic TEOA additive was introduced, the half-metallocene Ru(II) catalyst leaned toward producing formate through the RuII-H mechanism, with a formate selectivity of 86%. On the other hand, in homogeneous catalysis with TFE additive, the CO2-to-formate conversion through RuII-H was less effective, yielding a more efficient CO2-to-CO conversion with a selectivity of >80% (TONformate of 140 and TONCO of 626 over 48 h). The preference between the two pathways was elucidated through an electrochemical mechanistic study, monitoring the fate of the metal-hydride intermediate. Compared to the homogeneous system, the TiO2-heterogenized (p-Cym)Ru(II) catalyst demonstrated enhanced and enduring performance, attaining TONs of 1000 for CO2-to-CO and 665 for CO2-to-formate.
Collapse
Affiliation(s)
- Daehan Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Farzad Molani
- Department of Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Min Su Choe
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Hyun Seok Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Kyung-Ryang Wee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Seongpil Hwang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Art E Cho
- Department of Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
2
|
Shen L, Wu X, Shi L, Xu X, Zhang J, Li F. Selective N-Alkylation of Aminobenzenesulfonamides with Alcohols for the Synthesis of Amino-( N-alkyl)benzenesulfonamides Catalyzed by a Metal-Ligand Bifunctional Ruthenium Catalyst. J Org Chem 2024; 89:8397-8406. [PMID: 38825774 DOI: 10.1021/acs.joc.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
[(p-Cymene)Ru(2,2'-bpyO)(H2O)] was proven to be an efficient catalyst for the synthesis of amino-(N-alkyl)benzenesulfonamides via selective N-alkylation of aminobenzenesulfonamides with alcohols. It was confirmed that functional groups in the bpy ligand are crucial for the activity of catalysts. Furthermore, the utilization of this catalytic system for the preparation of a biologically active compound was presented.
Collapse
Affiliation(s)
- Lu Shen
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Xingliang Wu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Lili Shi
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Xiangchao Xu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Jin Zhang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Feng Li
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
3
|
AKBAYRAK S, TONBUL Y, ÖZKAR S. Reducible tungsten(VI) oxide-supported ruthenium(0) nanoparticles: highly active catalyst for hydrolytic dehydrogenation of ammonia borane. Turk J Chem 2023; 47:1224-1238. [PMID: 38173757 PMCID: PMC10762867 DOI: 10.55730/1300-0527.3607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/31/2023] [Accepted: 09/28/2023] [Indexed: 01/05/2024] Open
Abstract
Reducible WO3 powder with a mean diameter of 100 nm is used as support to stabilize ruthenium(0) nanoparticles. Ruthenium(0) nanoparticles are obtained by NaBH4 reduction of ruthenium(III) precursor on the surface of WO3 support at room temperature. Ruthenium(0) nanoparticles are uniformly dispersed on the surface of tungsten(VI) oxide. The obtained Ru0/WO3 nanoparticles are found to be active catalysts in hydrolytic dehydrogenation of ammonia borane. The turnover frequency (TOF) values of the Ru0/WO3 nanocatalysts with the metal loading of 1.0%, 2.0%, and 3.0% wt. Ru are 122, 106, and 83 min-1, respectively, in releasing hydrogen gas from the hydrolysis of ammonia borane at 25.0 °C. As the Ru0/WO3 (1.0% wt. Ru) nanocatalyst with an average particle size of 2.6 nm provides the highest activity among them, it is extensively investigated. Although the Ru0/WO3 (1.0% wt. Ru) nanocatalyst is not magnetically separable, it has extremely high reusability in the hydrolysis reaction as it preserves 100% of initial catalytic activity even after the 5th run of hydrolysis. The high activity and reusability of Ru0/WO3 (1.0% wt. Ru) nanocatalyst are attributed to the favorable metal-support interaction between the ruthenium(0) nanoparticles and the reducible tungsten(VI) oxide. The high catalytic activity and high stability of Ru0/WO3 nanoparticles increase the catalytic efficiency of precious ruthenium in hydrolytic dehydrogenation of ammonia borane.
Collapse
Affiliation(s)
- Serdar AKBAYRAK
- Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, Konya,
Turkiye
| | - Yalçın TONBUL
- Ziya Gökalp Faculty of Education, Dicle University, Diyarbakır,
Turkiye
| | - Saim ÖZKAR
- Department of Chemistry, Middle East Technical University, Ankara,
Turkiye
| |
Collapse
|
4
|
Bonaldi L, Bortoluzzi M, Zacchini S, Pampaloni G, Marchetti F, Biancalana L. Triazine Chalcogenones from Thiocyanate or Selenocyanate Addition to Tetrazine Ligands in Ruthenium Arene Complexes. Inorg Chem 2023; 62:7814-7833. [PMID: 37167024 DOI: 10.1021/acs.inorgchem.3c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The chemistry of 1,2,4,5-tetrazines has attracted considerable interest both from a synthetic and applicative standpoint. Recently, regioselective reactions with alkynes and alkenes have been reported to be favored once the tetrazine ring is coordinated to Re(I), Ru(II), and Ir(III) centers. Aiming to further explore the effects of metal coordination, herein, we unveil the unexplored reactivity of tetrazines with chalcogenocyanate anions. Thus, ruthenium(II) tetrazine complexes, [RuCl{κ2N-3-(2-pyridyl)-6-R-1,2,4,5-tetrazine}(η6-arene)]+ (arene = p-cymene, R = H, [1a]+, R = Me, [1b]+, R = 2-pyridyl, [1c]+; arene = C6Me6, R = H, [1d]+, R = Me, [1e]+; PF6- salts), reacted quantitatively and in mild conditions with M(ECN) salts (M = Na, K, Bu4N; E = O, S, Se). The addition of thiocyanate or selenocyanate to the tetrazine ligand is regioselective and afforded, via N2 release, 1,2,4-triazine-5-chalcogenone heterocycles, the one with selenium being unprecedented. The novel ruthenium complexes [RuCl{κ2N-(2-pyridyl)}{triazine chalcogenone}(η6-arene)] 2a-e (sulfur), 3b, 3d, and 3e (selenium) were characterized by analytical (CHNS analyses, conductivity), spectroscopic (IR, multinuclear and two-dimensional (2D) NMR), and spectrometric (electrospray ionization mass spectrometry (ESI-MS)) techniques. According to density functional theory (DFT) calculations, the nucleophilic attack of SCN- on the tetrazine ring is kinetically driven. Compound 2b is selectively and reversibly mono-protonated on the triazine ring by HCl or other strong acids, affording a single tautomer. When reactions of chalcogenocyanates were performed on the 2,2'-bipyridine (bpy) complex [RuCl(bpy)(η6-p-cymene)]+, the chloride substitution products [Ru(ECN)(bpy)(η6-p-cymene)]+ (E = O, [4]+; E = S, [5]+; E = Se, [6]+) were obtained in 82-90% yields (PF6- salts). Combined spectroscopic data (IR, 1H/13C/77Se NMR) was revealed to be a useful tool to study the linkage isomerism of the chalcogenocyanate ligand in [4-6]+.
Collapse
Affiliation(s)
- Lorenzo Bonaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Marco Bortoluzzi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, I-30175 Mestre, Venezia, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
5
|
Bustos I, Seco JM, Rodriguez-Dieguez A, Garralda MA, Mendicute-Fierro C. Formation of Irida-β-ketoimines and PCN amine-Ir(III) Complexes by Reacting Irida-β-diketones with Aliphatic Diamines: Catalytic Activity in Hydrogen Release by Methanolysis of H 3N-BH 3. Organometallics 2022; 41:3654-3663. [PMID: 37559938 PMCID: PMC10407880 DOI: 10.1021/acs.organomet.2c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 12/02/2022]
Abstract
Aliphatic diamines [(H2N(CH2)nNHR) (a-d) n = 2: R = H (a), R = CH3 (b), R = C2H5 (c), n = 3, R = H (d) or rac-2-(aminomethyl)piperidine (e)] react with [IrH(Cl){(PPh2(o-C6H4CO))2H}] in THF to afford ketoimine complexes [IrH(Cl){(PPh2(o-C6H4CO))(PPh2(o-C6H4CN(CH2)nNHR))H}] (2a-2d) or [IrH(Cl){(PPh2(o-C6H4CO))(PPh2(o-C6H4CNCH2(C5H9NH)))H}] (2e), containing a bridging N-H···O hydrogen bond and a dangling amine. Complex 2e consists of an almost equimolar mixture of two diastereomers. In protic solvents, the dangling amine in complexes 2 displaces chloride to afford cationic acyl-iminium compounds, [IrH(PPh2(o-C6H4CO))(PPh2(o-C6H4CNH(CH2)nNHR))]X (3a-3d, X = Cl) or [IrH(PPh2(o-C6H4CO))(PPh2(o-C6H4CNHCH2(C5H9NH)))]Cl (3e) and (4a-4b, X = ClO4), with new hemilabile terdentate PCNamine ligands adopting a facial disposition. Complexes 3 contain the corresponding phosphorus atom trans to hydride and the amine fragment trans to acyl, while complexes 4 contain the amine trans to hydride. 3b and 4b consist of 80:20 and 95:5 mixtures of diastereomers, respectively, while 3e contains a 65:35 mixture. In the presence of KOH, intermediate cationic acyl-iminium complexes 3 transform into neutral acyl-imine [IrH(PPh2(o-C6H4CO))(PPh2(o-C6H4CN(CH2)nNHR))] derivatives (5) with retention of the stereochemistry. Single-crystal X-ray diffraction analysis was performed on 2a, [3a]Cl, [3b]Cl, [4a]ClO4, and 5b. Complexes 2, 3, and 5 catalyze the methanolysis of ammonia-borane under air to release hydrogen. The highest activity is observed for ketoimine complexes 2.
Collapse
Affiliation(s)
- Itxaso Bustos
- Department
of Applied Chemistry, Faculty of Chemistry, University of The Basque Country UPV/EHU, Paseo Manuel Lardizabal 3, 20018Donostia-San Sebastián, Spain
| | - Jose M. Seco
- Department
of Applied Chemistry, Faculty of Chemistry, University of The Basque Country UPV/EHU, Paseo Manuel Lardizabal 3, 20018Donostia-San Sebastián, Spain
| | | | - María A. Garralda
- Department
of Applied Chemistry, Faculty of Chemistry, University of The Basque Country UPV/EHU, Paseo Manuel Lardizabal 3, 20018Donostia-San Sebastián, Spain
| | - Claudio Mendicute-Fierro
- Department
of Applied Chemistry, Faculty of Chemistry, University of The Basque Country UPV/EHU, Paseo Manuel Lardizabal 3, 20018Donostia-San Sebastián, Spain
| |
Collapse
|
6
|
Ríos P, Rodríguez A, Conejero S. Activation of Si-H and B-H bonds by Lewis acidic transition metals and p-block elements: same, but different. Chem Sci 2022; 13:7392-7418. [PMID: 35872827 PMCID: PMC9241980 DOI: 10.1039/d2sc02324e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/18/2022] [Indexed: 01/01/2023] Open
Abstract
In this Perspective we discuss the ability of transition metal complexes to activate and cleave the Si-H and B-H bonds of hydrosilanes and hydroboranes (tri- and tetra-coordinated) in an electrophilic manner, avoiding the need for the metal centre to undergo two-electron processes (oxidative addition/reductive elimination). A formal polarization of E-H bonds (E = Si, B) upon their coordination to the metal centre to form σ-EH complexes (with coordination modes η1 or η2) favors this type of bond activation that can lead to reactivities involving the formation of transient silylium and borenium/boronium cations similar to those proposed in silylation and borylation processes catalysed by boron and aluminium Lewis acids. We compare the reactivity of transition metal complexes and boron/aluminium Lewis acids through a series of catalytic reactions in which pieces of evidence suggest mechanisms involving electrophilic reaction pathways.
Collapse
Affiliation(s)
- Pablo Ríos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| | - Amor Rodríguez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| | - Salvador Conejero
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| |
Collapse
|
7
|
Shimbayashi T, Ito H, Shimizu M, Sano H, Sakaki S, Fujita KI. Effect of Substituents in Functional Bipyridonate Ligands on Ruthenium‐Catalyzed Dehydrogenative Oxidation of Alcohols: An Experimental and Computational Study. ChemCatChem 2022. [DOI: 10.1002/cctc.202200280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takuya Shimbayashi
- Kyoto University Graduate School of Human and Environmental Studies Yoshidanihonmatsu-cho, Sakyo-ku 606-8501 Kyoto JAPAN
| | - Hajime Ito
- Kyoto University - Yoshida Campus: Kyoto Daigaku Graduate School of Human and Environmental Studies JAPAN
| | - Mineyuki Shimizu
- Kyoto University - Yoshida Campus: Kyoto Daigaku Graduate School of Human and Environmental Studies JAPAN
| | - Hayato Sano
- Kyoto University - Yoshida Campus: Kyoto Daigaku Graduate School of Human and Environmental Studies JAPAN
| | - Shigeyoshi Sakaki
- Kyoto University: Kyoto Daigaku Element Strategy Initiative for Catalysts and Batteries Goryo-Ohara, Nishikyo-ku 615-8245 Kyoto JAPAN
| | - Ken-ichi Fujita
- Kyoto University - Yoshida Campus: Kyoto Daigaku Graduate School of Human and Environmental Studies Yoshidanihonmatsucho, Sakyo-ku 606-8501 Kyoto JAPAN
| |
Collapse
|
8
|
Direct couplings of secondary alcohols with primary alkenyl alcohols to α-alkylated ketones via a tandem transfer hydrogenation/hydrogen autotransfer process catalyzed by a metal-ligand bifunctional iridium catalyst. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
From selective transfer hydrogenation to selective hydrogen auto-transfer process: An efficient method for the synthesis of alkenyl ketones via iridium-catalyzed α-alkylation of ketones with alkenyl alcohols. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Bustos I, Freixa Z, Pazos A, Mendicute‐Fierro C, Garralda MA. Efficient Homogeneous Hydridoirida‐β‐Diketone‐Catalyzed Methanolysis of Ammonia‐Borane for Hydrogen Release in Air. Mechanistic Insights. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Itxaso Bustos
- Facultad de Química de San Sebastián Universidad del País Vasco (UPV/EHU) Apdo. 1072 20080 San Sebastián Spain
| | - Zoraida Freixa
- Facultad de Química de San Sebastián Universidad del País Vasco (UPV/EHU) Apdo. 1072 20080 San Sebastián Spain
- Ikerbasque Basque Foundation for Science 48011 Bilbao Spain
| | - Ariadna Pazos
- Facultad de Química de San Sebastián Universidad del País Vasco (UPV/EHU) Apdo. 1072 20080 San Sebastián Spain
| | - Claudio Mendicute‐Fierro
- Facultad de Química de San Sebastián Universidad del País Vasco (UPV/EHU) Apdo. 1072 20080 San Sebastián Spain
| | - María A. Garralda
- Facultad de Química de San Sebastián Universidad del País Vasco (UPV/EHU) Apdo. 1072 20080 San Sebastián Spain
| |
Collapse
|
11
|
Kumar A, Eyyathiyil J, Choudhury J. Reduction of Carbon Dioxide with Ammonia-Borane under Ambient Conditions: Maneuvering a Catalytic Way. Inorg Chem 2021; 60:11684-11692. [PMID: 34270234 DOI: 10.1021/acs.inorgchem.1c01803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the development of alternatives to the traditional catalytic hydrogenation of CO2 with gaseous H2, employing nongaseous H2 storage compounds as potential reductants for catalytic transfer hydrogenation of CO2 is promising. Ammonia-borane, due to its high hydrogen storage capacity (19.6 wt %), has been used for catalytic transfer hydrogenation of several organic unsaturated compounds. However, a similar protocol involving catalytic transfer hydrogenation of less reactive CO2 with NH3BH3 is yet to be realized experimentally. Herein, we demonstrate the first catalytic CO2 transfer hydrogenation process for generating formate salt with NH3BH3 under ambient conditions (1 atm and 30 °C) employing a cationic "Ir(III)-abnormal NHC" catalyst via an electrophilic NH3BH3 activation route. It exhibited an initial turnover frequency of 686 h-1 and a high turnover number (TON) of ≈1300 in just 4 h. Most significantly, the catalyst was durable enough to maintain long-term activity, and upon only periodic recharging of NH3BH3, it furnished a total TON of >4200 in 10 h.
Collapse
Affiliation(s)
- Abhishek Kumar
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Jusaina Eyyathiyil
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| |
Collapse
|
12
|
Zhang G, Morrison D, Bao G, Yu H, Yoon CW, Song T, Lee J, Ung AT, Huang Z. An Amine–Borane System Featuring Room‐Temperature Dehydrogenation and Regeneration. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guojin Zhang
- School of Civil & Environmental Engineering University of Technology Sydney Ultimo New South Wales 2007 Australia
| | - Daniel Morrison
- School of Civil & Environmental Engineering University of Technology Sydney Ultimo New South Wales 2007 Australia
| | - Guochen Bao
- School of Civil & Environmental Engineering University of Technology Sydney Ultimo New South Wales 2007 Australia
| | - Haibo Yu
- Molecular Horizons and School of Chemistry & Molecular Bioscience Faculty of Science, Medicine & Health University of Wollongong Northfields Ave Wollongong NSW 2522 Australia
| | - Chang Won Yoon
- Center for Hydrogen and Fuel Cell Research Korea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Taekyong Song
- Hydrogen Research Center KOGAS Research Institute Incheon 21993 Republic of Korea
| | - Jihye Lee
- Hydrogen Research Center KOGAS Research Institute Incheon 21993 Republic of Korea
| | - Alison T. Ung
- School of Mathematical and Physical Sciences University of Technology Sydney Ultimo NSW 2007 Australia
| | - Zhenguo Huang
- School of Civil & Environmental Engineering University of Technology Sydney Ultimo New South Wales 2007 Australia
| |
Collapse
|
13
|
Zhang G, Morrison D, Bao G, Yu H, Yoon CW, Song T, Lee J, Ung AT, Huang Z. An Amine-Borane System Featuring Room-Temperature Dehydrogenation and Regeneration. Angew Chem Int Ed Engl 2021; 60:11725-11729. [PMID: 33844369 DOI: 10.1002/anie.202017302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/15/2021] [Indexed: 11/07/2022]
Abstract
Amine-borane complexes have been extensively studied as hydrogen storage materials. Herein, we report a new amine-borane system featuring a reversible dehydrogenation and regeneration at room temperature. In addition to high purity H2 , the reaction between ethylenediamine bisborane (EDAB) and ethylenediamine (ED) leads to unique boron-carbon-nitrogen 5-membered rings in the dehydrogenation product where one boron is tricoordinated by three nitrogen atoms. Owing to the unique cyclic structure, the dehydrogenation product can be efficiently converted back to EDAB by NaBH4 and H2 O at room temperature. This finding could lead to the discovery of new amine boranes with potential usage as hydrogen storage materials.
Collapse
Affiliation(s)
- Guojin Zhang
- School of Civil & Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Daniel Morrison
- School of Civil & Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Guochen Bao
- School of Civil & Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Haibo Yu
- Molecular Horizons and School of Chemistry & Molecular Bioscience, Faculty of Science, Medicine & Health, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
| | - Chang Won Yoon
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Taekyong Song
- Hydrogen Research Center, KOGAS Research Institute, Incheon, 21993, Republic of Korea
| | - Jihye Lee
- Hydrogen Research Center, KOGAS Research Institute, Incheon, 21993, Republic of Korea
| | - Alison T Ung
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Zhenguo Huang
- School of Civil & Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| |
Collapse
|
14
|
Xu X, Ai Y, Wang R, Liu L, Yang J, Li F. Ruthenium-catalyzed acceptorless dehydrogenative coupling of o-aminobenzyl alcohols with ketones to quinolines in the presence of carbonate salt. J Catal 2021. [DOI: 10.1016/j.jcat.2020.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Liu P, Tung NT, Xu X, Yang J, Li F. N-Methylation of Amines with Methanol in the Presence of Carbonate Salt Catalyzed by a Metal-Ligand Bifunctional Ruthenium Catalyst [( p-cymene)Ru(2,2'-bpyO)(H 2O)]. J Org Chem 2021; 86:2621-2631. [PMID: 33502847 DOI: 10.1021/acs.joc.0c02685] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A ruthenium complex [(p-cymene)Ru(2,2'-bpyO)(H2O)] was found to be a general and efficient catalyst for the N-methylation of amines with methanol in the presence of carbonate salt. Moreover, a series of sensitive substituents, such as nitro, ester, cyano, and vinyl groups, were tolerated under present conditions. It was confirmed that OH units in the ligand are crucial for the catalytic activity. Notably, this research exhibited the potential of metal-ligand bifunctional ruthenium catalysts for the hydrogen autotransfer process.
Collapse
Affiliation(s)
- Peng Liu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Nguyen Thanh Tung
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Xiangchao Xu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Jiazhi Yang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| | - Feng Li
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|