1
|
Huss T, Dixon IM. Electronic Structure and Geometry of the Lowest 2LMCT State of Fe(III) Potential Fluorescent Emitters†. Inorg Chem 2023; 62:4284-4290. [PMID: 36852931 DOI: 10.1021/acs.inorgchem.2c04407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Metal complexes with a 3d6 electron count are emerging as an alternative to 4d6-based photosensitizers, emitters, or photoredox catalysts. In recent years, several Fe(II) potential emitters have been proposed, based on strongly donating ligand sets. Those tend to facilitate oxidation to their 3d5 species, whose photophysics is based on low-lying ligand-to-metal charge-transfer (LMCT) states. The geometry and electronic structure of 2LMCT states are unveiled in this work.
Collapse
Affiliation(s)
- Tabea Huss
- Laboratoire de Chimie et Physique Quantiques, Universite de Toulouse, CNRS, Universite Toulouse III - Paul Sabatier, F-31062 Toulouse, France
| | - Isabelle M Dixon
- Laboratoire de Chimie et Physique Quantiques, Universite de Toulouse, CNRS, Universite Toulouse III - Paul Sabatier, F-31062 Toulouse, France
| |
Collapse
|
2
|
Law KC, Tang Z, Wu L, Wan Q, To WP, Chang X, Low KH, Liu Y, Che CM. Cyclometalated Iron and Ruthenium Complexes Supported by a Tetradentate Ligand Scaffold with Mixed O, N, and C Donor Atoms: Synthesis, Structures, and Excited-State Properties. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kwok-Chung Law
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhou Tang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Qingyun Wan
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kam-Hung Low
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- HKU Shenzhen Institute of Research & Innovation, Shenzhen, Guangdong 518057, China
| |
Collapse
|
3
|
Brief survey of diiron and monoiron carbonyl complexes and their potentials as CO-releasing molecules (CORMs). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213634] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Ryabov AD. The Exchange of Cyclometalated Ligands. Molecules 2021; 26:E210. [PMID: 33401624 PMCID: PMC7795987 DOI: 10.3390/molecules26010210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022] Open
Abstract
Reactions of cyclometalated compounds are numerous. This account is focused on one of such reactions, the exchange of cyclometalated ligands, a reaction between a cyclometalated compound and an incoming ligand that replaces a previously cyclometalated ligand to form a new metalacycle: + H-C*~Z ⇄ + H-C~Y. Originally discovered for PdII complexes with Y/Z = N, P, S, the exchange appeared to be a mechanistically challenging, simple, and convenient routine for the synthesis of cyclopalladated complexes. Over four decades it was expanded to cyclometalated derivatives of platinum, ruthenium, manganese, rhodium, and iridium. The exchange, which is also questionably referred to as transcyclometalation, offers attractive synthetic possibilities and assists in disclosing key mechanistic pathways associated with the C-H bond activation by transition metal complexes and C-M bond cleavage. Both synthetic and mechanistic aspects of the exchange are reviewed and discussed.
Collapse
Affiliation(s)
- Alexander D Ryabov
- Institute for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Tang Z, Chang XY, Wan Q, Wang J, Ma C, Law KC, Liu Y, Che CM. Bis(tridentate) Iron(II) Complexes with a Cyclometalating Unit: Photophysical Property Enhancement with Combinatorial Strong Ligand Field Effect. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00149] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhou Tang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Xiao-Yong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Qingyun Wan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Jian Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Chensheng Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Kwok-Chung Law
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|