1
|
Stroek W, Rowlinson NAV, Hudson LA, Albrecht M. Heteroleptic Triazole-Bisoxazoline Iron Complexes Reveal Lability of the Iron-Carbene Bond Even Within a Chelating Scaffold. Inorg Chem 2024; 63:17134-17140. [PMID: 39227361 DOI: 10.1021/acs.inorgchem.4c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
N-Heterocyclic carbenes have proven to be excellent ligands for transition metals, with numerous applications in catalysis and beyond. However, they have also displayed lability with first row transition metals, largely due to the hard-soft mismatch of the metal-carbon bond. Chelation is often considered a suitable methodology for supporting the labile M-C bond through the introduction of a strongly coordinating donor site such as hard phenolates. Herein, we demonstrate that chelating phenolate-carbene ligands are kinetically labile in iron(II) complexes. Specifically, heteroleptic iron complexes [Fe(C^O)(N^N)] were synthesized composed of a phenolate-functionalized triazolylidene (CO) ligand and N,N-bidentate coordinating bisoxazoline ligand (N^N). Stability studies by 1H NMR spectroscopy showed that the heteroleptic complexes preferentially convert to their corresponding homoleptic complexes [Fe(C^O)2] and [Fe(N^N)2], indicating reversible decoordination of the carbene phenolate chelate from the iron center. The rate of this rearrangement is dependent on the substituents on the ligands and increases for triazolylidene wingtip groups mesityl (Mes) < di(isopropyl)aryl (DIPP) < adamantyl (Ad), with significant ligand redistribution for DIPP and Ad systems observed even at room temperature. The most stable heteroleptic complex featured mesityl wingtips on the triazole and phenyl groups as oxazoline substituents and displayed signs of ligand exchange only after 16 h at room temperature. This substitutional lability of carbene ligands even when supported by a phenolate chelating group has direct consequences when designing iron complexes for catalytic applications.
Collapse
Affiliation(s)
- Wowa Stroek
- Department of Chemistry, Biochemistry and pharmaceutical sciences, University of Bern, Bern CH-3012, Switzerland
| | - Nathalie A V Rowlinson
- Department of Chemistry, Biochemistry and pharmaceutical sciences, University of Bern, Bern CH-3012, Switzerland
| | - Luke A Hudson
- Department of Chemistry, Biochemistry and pharmaceutical sciences, University of Bern, Bern CH-3012, Switzerland
| | - Martin Albrecht
- Department of Chemistry, Biochemistry and pharmaceutical sciences, University of Bern, Bern CH-3012, Switzerland
| |
Collapse
|
2
|
Stroek W, Albrecht M. Application of first-row transition metal complexes bearing 1,2,3-triazolylidene ligands in catalysis and beyond. Chem Soc Rev 2024; 53:6322-6344. [PMID: 38726664 PMCID: PMC11181992 DOI: 10.1039/d4cs00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 06/18/2024]
Abstract
Triazole-derived N-heterocyclic carbenes, triazolylidenes (trz) have become an interesting alternative to the ubiquitous Arduengo-type imidazole-derived carbenes, in part because they are stronger donors, and in other parts due to their versatile synthesis through different types of click reactions. While the use of trz ligands has initially focused on their coordination to precious metals for catalytic applications, the recent past has seen a growing interest in their impact on first-row transition metals. Coordination of trz ligands to such 3d metals is more challenging due to the orbital mismatch between the carbene and the 3d metal center, which also affects the stability of such complexes. Here we summarize the strategies that have been employed so far to overcome these challenges and to prepare first-row transition metal complexes containing at least one trz ligand. Both properties and reactivities of these trz complexes are comprehensively compiled, with a focus on photophysical properties and, in particular, on the application of these complexes in homogeneous catalysis. The diversity of catalytic transformations entailed with these trz 3d metal complexes as well as the record-high performance in some of the reactions underpins the benefits imparted by trz ligands.
Collapse
Affiliation(s)
- Wowa Stroek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Martin Albrecht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
3
|
Stevens JE, Miller JD, Fitzsimmons MC, Moore CE, Thomas CM. Z-selective dimerization of terminal alkynes by a (PNNP)Fe II complex. Chem Commun (Camb) 2024; 60:5169-5172. [PMID: 38639737 DOI: 10.1039/d4cc00469h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A tetradentate bis(amido)bis(phosphine) FeII complex, (PNNP)Fe, is shown to activate the terminal C-H bond of aryl alkynes across its Fe-Namide bonds. (PNNP)Fe is also shown to catalytically dimerize terminal aryl alkynes to produce 1,3-enynes with Z : E ratios as high as 96 : 4 with yields up to 95% and loadings as low as 1 mol% at 30 °C in 2 h. A plausible metal-ligand cooperative mechanism invoking a vinylidene intermediate is proposed.
Collapse
Affiliation(s)
- Jeremiah E Stevens
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA.
| | - Justin D Miller
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA.
| | - Matthew C Fitzsimmons
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA.
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA.
| | - Christine M Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave., Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Matsubara K, Yamada Y, Iwasaki H, Ikeda H, Kanetsugu Y, Kawata S, Koga Y. A 1,2,3-triazole-derived pincer-type mesoionic carbene complex of iron(II): carbonyl elimination and hydrosilylation of aromatic aldehydes via the concerted reaction with hydrosilane and a base. Dalton Trans 2023; 52:572-582. [PMID: 36537300 DOI: 10.1039/d2dt03617g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iron complexes bearing 1,2,3-triazol-5-ylidene were synthesized and applied to the reaction with hydrosilane and homogeneous catalytic hydrosilylation of aromatic ketones and aldehydes. Addition of a free carbene to a solution of Fe(CO)4Br2 yielded an octahedral, diamagnetic and cationic iron(II) complex [Fe(1,2,3-triazolylidene)(CO)2Br]+. Pyrolysis of the dicarbonyl complex eliminated the two CO ligands to form a paramagnetic four-coordinate complex. A theoretical study using DFT calculations indicated that the spin state changed from singlet to quintet during ligand elimination. Investigations of the successful hydrosilylation of acetophenone and benzaldehyde derivatives using MIC-iron(II) bromide suggested the importance of the base for efficient conversion in the catalytic process. The bromide-to-hydride exchange reaction, transmetallation, of MIC-iron(II) bromide in the presence of KOtBu and HSi(OEt)3 which could occur in the initial process of hydrosilylation was proposed, and supported by a theoretical study.
Collapse
Affiliation(s)
- Kouki Matsubara
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| | - Yuji Yamada
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| | - Haruka Iwasaki
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| | - Hayao Ikeda
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| | - Yuki Kanetsugu
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| | - Satoshi Kawata
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| | - Yuji Koga
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| |
Collapse
|
5
|
Nuñez Bahena E, Schafer LL. From Stoichiometric to Catalytic E–H Functionalization by Non-Metallocene Zirconium Complexes─Recent Advances and Mechanistic Insights. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Erick Nuñez Bahena
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Laurel L. Schafer
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
6
|
Zámbó GG, Mayr J, Sauer MJ, Schlachta TP, Reich RM, Kühn FE. The first macrocyclic abnormally coordinating tetra-1,2,3-triazole-5-ylidene iron complex: a promising candidate for olefin epoxidation. Dalton Trans 2022; 51:13591-13595. [PMID: 36039702 DOI: 10.1039/d2dt02561b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first macrocyclic and abnormally coordinating, mesoionic N-heterocyclic carbene iron complex has been synthesised and characterised via ESI-MS, EA, SC-XRD, CV, NMR and UV/Vis spectroscopy. 13C-NMR spectroscopy and CV measurements indicate a strong σ-donor ability of the carbene moieties, suggesting an efficient catalytic activity of the iron complex in oxidation reactions. Initial tests in the epoxidation of cis-cyclooctene as a model substrate confirm this assumption.
Collapse
Affiliation(s)
- Greta G Zámbó
- Molecular Catalysis, Department of Chemistry and Catalysis Research Centre, Technische Universität München, Lichtenbergstr. 4, 85784 Garching bei München, Germany.
| | - Johannes Mayr
- Molecular Catalysis, Department of Chemistry and Catalysis Research Centre, Technische Universität München, Lichtenbergstr. 4, 85784 Garching bei München, Germany.
| | - Michael J Sauer
- Molecular Catalysis, Department of Chemistry and Catalysis Research Centre, Technische Universität München, Lichtenbergstr. 4, 85784 Garching bei München, Germany.
| | - Tim P Schlachta
- Molecular Catalysis, Department of Chemistry and Catalysis Research Centre, Technische Universität München, Lichtenbergstr. 4, 85784 Garching bei München, Germany.
| | - Robert M Reich
- Molecular Catalysis, Department of Chemistry and Catalysis Research Centre, Technische Universität München, Lichtenbergstr. 4, 85784 Garching bei München, Germany.
| | - Fritz E Kühn
- Molecular Catalysis, Department of Chemistry and Catalysis Research Centre, Technische Universität München, Lichtenbergstr. 4, 85784 Garching bei München, Germany.
| |
Collapse
|
7
|
Thompson CV, Narro AL, Arman HD, Tonzetich ZJ. Synthesis and Reactivity of Iron(II) Acetylide Complexes Relevant to Alkyne Dimerization. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. Vance Thompson
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Ana L. Narro
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Hadi D. Arman
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Zachary J. Tonzetich
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| |
Collapse
|
8
|
Abstract
This Perspective article highlights the recent development of mesoionic N-heterocyclic olefins (mNHOs), where the exo-cyclic olefinic carbon is not bonded to strongly electron-withdrawing groups. The unquenched basicity and nucleophilicity of the exo-cyclic olefinic carbon make mNHOs strong σ-donors and enable unique reactivity patterns.
Collapse
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6.
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6.
| |
Collapse
|
9
|
Bacheley L, Llopis Q, Westermeyer A, Guillamot G, Phansavath P, Ratovelomanana-Vidal V. Synthesis of 2-acetal-1,3-enynes by Sonogashira reaction of bromovinyl acetals with alkynes: application to the formal synthesis of a glucagon antagonist. NEW J CHEM 2022. [DOI: 10.1039/d2nj01541b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of functionalized 1,3-enynes bearing an acetal moiety at the 2-position has been studied through Sonogashira reaction of bromovinyl acetals with various alkyl- and aryl-substituted terminal alkynes.
Collapse
Affiliation(s)
- Lucas Bacheley
- PSL University, Chimie ParisTech, Institute of Chemistry for Life & Health Sciences, CNRS UMR8060, CSB2D Team, 11 rue Pierre et Marie Curie, 75005, Paris, France
- SEQENS, 2-8 rue de Rouen, ZI de Limay-Porcheville, 78440, Porcheville, France
| | - Quentin Llopis
- PSL University, Chimie ParisTech, Institute of Chemistry for Life & Health Sciences, CNRS UMR8060, CSB2D Team, 11 rue Pierre et Marie Curie, 75005, Paris, France
- SEQENS, 2-8 rue de Rouen, ZI de Limay-Porcheville, 78440, Porcheville, France
| | - Anne Westermeyer
- PSL University, Chimie ParisTech, Institute of Chemistry for Life & Health Sciences, CNRS UMR8060, CSB2D Team, 11 rue Pierre et Marie Curie, 75005, Paris, France
- SEQENS, 2-8 rue de Rouen, ZI de Limay-Porcheville, 78440, Porcheville, France
| | - Gérard Guillamot
- SEQENS, 2-8 rue de Rouen, ZI de Limay-Porcheville, 78440, Porcheville, France
| | - Phannarath Phansavath
- PSL University, Chimie ParisTech, Institute of Chemistry for Life & Health Sciences, CNRS UMR8060, CSB2D Team, 11 rue Pierre et Marie Curie, 75005, Paris, France
| | - Virginie Ratovelomanana-Vidal
- PSL University, Chimie ParisTech, Institute of Chemistry for Life & Health Sciences, CNRS UMR8060, CSB2D Team, 11 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
10
|
Stroek W, Keilwerth M, Pividori DM, Meyer K, Albrecht M. An Iron-Mesoionic Carbene Complex for Catalytic Intramolecular C-H Amination Utilizing Organic Azides. J Am Chem Soc 2021; 143:20157-20165. [PMID: 34841864 DOI: 10.1021/jacs.1c07378] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis of N-heterocycles is of paramount importance for the pharmaceutical industry. They are often synthesized through atom economic and environmentally unfriendly methods, generating significant waste. A less explored, but greener, alternative is the synthesis through the direct intramolecular C-H amination utilizing organic azides. Few examples exist by using this method, but many are limited due to the required use of stoichiometric amounts of Boc2O. Herein, we report a homoleptic C,O-chelating mesoionic carbene-iron complex, which is the first iron-based complex that does not require the addition of any protecting groups for this transformation and that is active also in strong donor solvents such as THF or even DMSO. The achieved turnover number is an order of magnitude higher than any other reported catalytic system. A variety of C-H bonds were activated, including benzylic, primary, secondary, and tertiary. By following the reaction over time, we determined the presence of an initiation period. Kinetic studies showed a first-order dependence on substrate concentration and half-order dependence on catalyst concentration. Intermolecular competition reactions with deuterated substrate showed no KIE, while separate reactions with deuterium-labeled substrate resulted in a KIE of 2.0. Moreover, utilizing deuterated substrate significantly decreased the initiation period of the catalysis. Preliminary mechanistic studies suggest a unique mechanism involving a dimeric iron species as the catalyst resting state.
Collapse
Affiliation(s)
- Wowa Stroek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Martin Keilwerth
- Department of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Daniel M Pividori
- Department of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Martin Albrecht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
11
|
Liang Q, Song D. Syntheses and Reactivity of Piano-Stool Iron Complexes of Picolyl-Functionalized N-Heterocyclic Carbene Ligands. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
12
|
Liang Q, Hayashi K, Li L, Song D. Dioxygenation of unprotected mesoionic N-heterocyclic olefins. Chem Commun (Camb) 2021; 57:10927-10930. [PMID: 34596194 DOI: 10.1039/d1cc04695k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report the dioxygenation of mesoionic N-heterocyclic olefins (mNHOs) using molecular dioxygen. For 1,2,3-triazole-derived mNHOs possessing a vinyl proton and at least one acidic C-H group, they are oxidized into the corresponding triazolium benzoate salts, whereas those without vinyl proton or an acidic C-H group are oxidized into triazolium oxide and ketones/aldehydes.
Collapse
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Kasumi Hayashi
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Longfei Li
- College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
13
|
Liang Q, Hayashi K, Zeng Y, Jimenez-Santiago JL, Song D. Constructing fused N-heterocycles from unprotected mesoionic N-heterocyclic olefins and organic azides via diazo transfer. Chem Commun (Camb) 2021; 57:6137-6140. [PMID: 34042131 DOI: 10.1039/d1cc02245h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesoionic N-heterocyclic olefins (mNHOs) were first reported last year and their reactivity remains largely unexplored. Herein we report the reaction of unprotected mNHOs and organic azides as a novel synthetic route to a variety of pyrazolo[3,4-d][1,2,3]triazoles, an important structural motif in drug candidates and energetic materials. The only byproduct aniline can be easily recycled and converted back to the starting organic azide, in compliance with the green chemistry principle. The reaction mechanism has been explored through experimental and computational studies.
Collapse
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Kasumi Hayashi
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Yimin Zeng
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Jose L Jimenez-Santiago
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
14
|
Nylund PVS, Ségaud NC, Albrecht M. Highly Modular Piano-Stool N-Heterocyclic Carbene Iron Complexes: Impact of Ligand Variation on Hydrosilylation Activity. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pamela V. S. Nylund
- Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Nathalie C. Ségaud
- Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Martin Albrecht
- Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
15
|
Weber SM, Hilt G. Late 3d Metal-Catalyzed (Cross-) Dimerization of Terminal and Internal Alkynes. Front Chem 2021; 9:635826. [PMID: 33777899 PMCID: PMC7991731 DOI: 10.3389/fchem.2021.635826] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/22/2021] [Indexed: 11/23/2022] Open
Abstract
This review will outline the recent advances in chemo-, regio-, and stereoselective (cross-) dimerization of terminal alkynes to generate 1,3-enynes using different types of iron and cobalt catalysts with altering oxidation states of the active species. In general, the used ligands have a crucial effect on the stereoselectivity of the reaction; e.g., bidentate phosphine ligands in cobalt catalysts can generate the E-configured head-to-head dimerization product, while tridentate phosphine ligands can generate either the Z-configured head-to-head dimerization product or the branched head-to-tail isomer. Furthermore, the hydroalkynylation of silyl-substituted acetylenes as donors to internal alkynes as acceptors will be discussed using cobalt and nickel catalysts.
Collapse
Affiliation(s)
- Sebastian M Weber
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany.,Institut für Chemie, Carl Von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Gerhard Hilt
- Institut für Chemie, Carl Von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
16
|
Liu J, Song H, Wang T, Jia J, Tong QX, Tung CH, Wang W. Iron-Catalyzed Regiodivergent Hydrostannation of Alkynes: Intermediacy of Fe(IV)-H versus Fe(II)-Vinylidene. J Am Chem Soc 2020; 143:409-419. [PMID: 33371677 DOI: 10.1021/jacs.0c11448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report an iron system, Cp*Fe(1,2-R2PC6H4X), which controls the Markovnikov and anti-Markovnikov hydrostannation of alkynes by tuning the ionic metal-heteroatom bonds (Fe-X) reactivity. The sequential addition of nBu3SnH to the iron-amido catalyst (1, X = HN-, R = Ph) affords a distannyl Fe(IV)-H species responsible for syn-addition of the Sn-H bond across the C≡C bond to produce branched α-vinylstannanes. Activation of the C(sp)-H bond of alkynes by an iron-aryloxide catalyst (2, X = O-, R = Cy) affords an iron(II) vinylidene intermediate, allowing for gem-addition of the Sn-H to the terminal-carbon producing β-vinylstannanes. These catalytic reactions exhibit excellent regioselectivity and broad functional group compatibility and enable the large-scale synthesis of diverse vinylstannanes. Many new reactions have been established based on such a synthetic Fe-X platform to demonstrate that the initial step of the catalysis is conveniently controlled by the activation of either the tin hydride or the alkyne substrate.
Collapse
Affiliation(s)
- Jianguo Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Heng Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tianlin Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jiong Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qing-Xiao Tong
- Department of Chemistry, Shantou University, Shantou 515063, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
17
|
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Kasumi Hayashi
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|