1
|
Khairbek AA, Badawi MAAH, Alzahrani AY, Thomas R. Assessing the catalytic potential of novel halogen substituted carbene NHC (F, Cl, Br, I) catalysts in [3 + 2] cycloaddition reactions: A computational investigation. Dalton Trans 2024; 53:16635-16646. [PMID: 39327943 DOI: 10.1039/d4dt02225d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
This study investigated the catalytic behavior of NHC-X ligands (X = F, Cl, Br, I) in cycloaddition reactions, focusing on both mononuclear and binuclear pathways. Using NCI (noncovalent interaction), RDG (reduced density gradient), ELF (electron localization function), and LOL (localized orbital locus) computational analyses, the electronic interactions and stability of the ligands were examined. The results showed that NHC-Cl exhibited the least steric hindrance and strongest transition state stabilization, making it the most efficient catalyst. NHC-F also demonstrated strong stabilization, particularly in the binuclear pathway. In contrast, NHC-Br showed moderate efficiency, whereas NHC-I was the least effective owing to higher Gibbs free energy values and greater steric hindrance, especially in polar solvents such as water and acetonitrile. This study emphasizes the crucial role of solvent effects and thermodynamic factors in influencing the catalytic efficiency. These findings provide a framework for optimizing NHC-based catalysts for chemical transformations.
Collapse
Affiliation(s)
- Ali A Khairbek
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
- Department of Chemistry, Faculty of Science, Tishreen University, Latakia, Syrian Arab Republic.
| | | | - Abdullah Y Alzahrani
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 23622, Saudi Arabia
| | - Renjith Thomas
- Department of Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala-686101, India.
- Centre for Theoretical and Computational Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala-686101, India
| |
Collapse
|
2
|
Nasirian A, Sung K, Jang HY, Yu S. Anomalous Reaction Pathways to Methane Production in Photocatalytic Ethanol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52191-52199. [PMID: 39315488 DOI: 10.1021/acsami.4c08729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Photocatalytic reduction reactions occasionally utilize sacrificial agents to scavenge photogenerated holes, thus enhancing the kinetics and efficiency of electron harvesting. However, exploring alternative hole-mediated oxidation reactions and their potential impact on photoredox processes is limited. This study investigates the products resulting from the oxidation of ethanol, a commonly used hole scavenger, and the underlying mechanisms involved. We examine a homogeneous eosin Y photoreaction scheme containing a Cu complex coordinated with an N-heterocyclic carbene, a combination often employed in CO2 conversion. Under visible-light excitation, this photosystem yields methane as an unusual product, alongside acetaldehyde and carbon monoxide. Mechanistic analysis reveals that ethanol undergoes a catalytic cascade involving oxidative processes, C-C bond cleavage, and intermolecular hydrogen atom transfer. Notably, the Lewis-acidic metal center of the Cu complex activates a novel pathway for ethanol oxidation. This work presents the influence of catalyst selection and reaction condition optimization on the emergence of new or unexpected catalytic processes.
Collapse
|
3
|
Sung K, Baek J, Choi S, Kim BS, Lee SH, Lee IH, Jang HY. Cu(triNHC)-catalyzed polymerization of glycidol to produce ultralow-branched polyglycerol. RSC Adv 2023; 13:24071-24076. [PMID: 37577101 PMCID: PMC10415747 DOI: 10.1039/d3ra04422j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
We have successfully synthesized a novel form of polyglycerol with an unprecedentedly low degree of branching (DB = 0.08-0.18), eliminating the need for glycidol protection. Leveraging the remarkable efficiency and selectivity of our Cu(triNHC) catalyst, comprising copper(i) ions and NHC ligands, we achieved a highly selective polymerization process. The proposed Cu-coordination mechanisms presented the formation of linear L1,3 units while effectively suppressing dendritic units. Consequently, our pioneering approach yielded polyglycerol with an ultralow DB and exceptional yields. To comprehensively assess the physical properties and topology of the synthesized polyglycerol, we employed 1H diffusion-ordered spectroscopy, size-exclusion chromatography, and matrix-assisted laser desorption/ionization-time of flight spectrometry. Remarkably, the ultralow-branched cyclic polyglycerol (DB = 0.08) synthesized at 0 °C showcased extraordinary characteristics, exhibiting the lowest diffusion coefficient and the highest molecular weight. This achievement establishes the significant potential of our polyglycerol with a low degree of branching, revolutionizing the field of biocompatible polymers.
Collapse
Affiliation(s)
- Kihyuk Sung
- Department of Energy Systems Research, Ajou University Suwon 16499 Korea +82(031)-219-2555
| | - Jinsu Baek
- Department of Chemistry, Yonsei University Seoul 03722 Korea
| | - Soonyoung Choi
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT) Ulsan 44412 Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University Seoul 03722 Korea
| | - Sang-Ho Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT) Ulsan 44412 Korea
| | - In-Hwan Lee
- Department of Chemistry, Ajou University Suwon 16499 Korea
| | - Hye-Young Jang
- Department of Energy Systems Research, Ajou University Suwon 16499 Korea +82(031)-219-2555
| |
Collapse
|
4
|
Hossain J, Gopinath JS, Tothadi S, Parameswaran P, Khan S. NHSi/NHGe-Supported Copper Halide and Pseudohalide Complexes: Synthesis and Application. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Jabed Hossain
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pa-shan, Pune 411008, India
| | - Jishnu Sai Gopinath
- National Institute of Technology Calicut, NIT Campus P.O., Kozhikode 673601, Kerala, India
| | - Srinu Tothadi
- Analytical and Environmental Sciences Division and Centralized, Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research, Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India
| | - Pattiyil Parameswaran
- National Institute of Technology Calicut, NIT Campus P.O., Kozhikode 673601, Kerala, India
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pa-shan, Pune 411008, India
| |
Collapse
|
5
|
Zeng Z, Yan F, Dai M, Yu Z, Liu F, Zhao Z, Bai R, Lan Y. Mechanistic Investigation of Cu-Catalyzed Asymmetric Alkynylation of Cyclic N-Sulfonyl Ketimines with Terminal Alkynes. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Zhen Zeng
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Fuzhi Yan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Moxi Dai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Ziwen Yu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Fenru Liu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Zhuang Zhao
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
6
|
Baguli S, Das S, Chakraborty M, Goswami S, Datta A, Mukherjee D. [(Flu)-(CH 2) 2-(NHC)-CH 2-(NHC)-(CH 2) 2-(Flu)] 2−: an ‘all-organic’ hybrid and flexible ligand that enwraps a Ca 2+ pseudo-tetrahedrally. Chem Commun (Camb) 2022; 58:12188-12191. [DOI: 10.1039/d2cc04700d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A conformationally flexible ligand, [(Flu)-(CH2)2-(NHC)-CH2-(NHC)-(CH2)2-(Flu)]2− (L), that offers four sequential organic donor modules and enwraps a Ca2+ pseudo-tetrahedrally in a twisted ‘S’-shape is devised.
Collapse
Affiliation(s)
- Sudip Baguli
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Shovan Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja SC Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Mahua Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Santu Goswami
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja SC Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Debabrata Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
7
|
Taakili R, Barthes C, Lepetit C, Duhayon C, Valyaev DA, Canac Y. Direct Access to Palladium(II) Complexes Based on Anionic C, C, C-Phosphonium Ylide Core Pincer Ligand. Inorg Chem 2021; 60:12116-12128. [PMID: 34333976 DOI: 10.1021/acs.inorgchem.1c01316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction of readily available imidazolium-phosphonium salt [MesIm(CH2)3PPh3](OTf)2 with PdCl2 in the presence of an excess of Cs2CO3 afforded selectively in one step the cationic Pd(II) complex [(C,C,C)Pd(NCMe)](OTf) exhibiting an LX2-type NHC-ylide-aryl C,C,C-pincer ligand via formal triple C-H bond activation. The replacement of labile MeCN in the latter by CNtBu and CO fragments allowed to estimate the overall electronic properties of this phosphonium ylide core pincer scaffold incorporating three different carbon-based donor ends by IR spectroscopy, cyclic voltammetry, and molecular orbital analysis, revealing its significantly higher electron-rich character compared to the structurally close NHC core pincer system with two phosphonium ylide extremities. The pincer complex [(C,C,C)Pd(CO)](OTf) represents a rare example of Pd(II) carbonyl species stable at room temperature and characterized by X-ray diffraction analysis. The treatment of isostructural cationic complexes [(C,C,C)Pd(NCMe)](OTf) and [(C,C,C)Pd(CO)](OTf) with (allyl)MgBr and nBuLi led to the formation of zwitterionic phosphonium organopalladates [(C,C,C)PdBr] and [(C,C,C)Pd(COnBu)], respectively.
Collapse
Affiliation(s)
- Rachid Taakili
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France
| | - Cécile Barthes
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France
| | - Christine Lepetit
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France
| | - Carine Duhayon
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Cedex 4 Toulouse, France
| |
Collapse
|