1
|
Bai M, Zhang S, Lin Z, Hao Z, Han Z, Lu GL, Lin J. Ruthenium Complexes with NNN-Pincer Ligands for N-Methylation of Amines Using Methanol. Inorg Chem 2024; 63:11821-11831. [PMID: 38848310 DOI: 10.1021/acs.inorgchem.4c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
A series of ruthenium complexes (Ru1-Ru4) bearing new NNN-pincer ligands were synthesized in 58-78% yields. All of the complexes are air and moisture stable and were characterized by IR, NMR, and high-resolution mass spectra (HRMS). In addition, the structures of Ru1-Ru3 were confirmed by X-ray crystallographic analysis. These Ru(II) complexes exhibited high catalytic efficiency and broad functional group tolerance in the N-methylation reaction of amines using CH3OH as both the C1 source and solvent. Experimental results indicated that the electronic effect of the substituents on the ligands considerably affects the catalytic reactivity of the complexes in which Ru3 bearing an electron-donating OMe group showed the highest activity. Deuterium labeling and control experiments suggested that the dehydrogenation of methanol to generate ruthenium hydride species was the rate-determining step in the reaction. Furthermore, this protocol also provided a ready approach to versatile trideuterated N-methylamines under mild conditions using CD3OD as a deuterated methylating agent.
Collapse
Affiliation(s)
- Mengxuan Bai
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Shengxin Zhang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhengguo Lin
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhiqiang Hao
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhangang Han
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Guo-Liang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019,Auckland 1142, New Zealand
- Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jin Lin
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
2
|
Templ J, Schnürch M. A Guide for Mono-Selective N-Methylation, N-Ethylation, and N-n-Propylation of Primary Amines, Amides, and Sulfonamides and Their Applicability in Late-Stage Modification. Chemistry 2024; 30:e202304205. [PMID: 38353032 DOI: 10.1002/chem.202304205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 03/06/2024]
Abstract
This review provides a comprehensive overview of mono-alkylation methodologies targeting crucial nitrogen moieties - amines, amides, and sulfonamides - found in organic building blocks and pharmaceuticals. Emphasizing the intersection of chemical precision with drug discovery, the central challenge addressed is achieving one-pot mono-selective short-chain N-alkylations (methylations, ethylations, and n-propylations), preventing undesired overalkylation. Additionally, sustainable, safe, and benign alternatives to traditional alkylating agents, including alcohols, carbon dioxide, carboxylic acids, nitriles, alkyl phosphates, quaternary ammonium salts, and alkyl carbonates, are explored. This review, categorized by the nature of the alkylating agent, aids researchers in selecting suitable methods for mono-selective N-alkylation.
Collapse
Affiliation(s)
- Johanna Templ
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060, Vienna, Austria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060, Vienna, Austria
| |
Collapse
|
3
|
Recent advances in the catalytic N-methylation and N-trideuteromethylation reactions using methanol and deuterated methanol. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Dinuclear Reactivity of One Metal Exalted by the Second One. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2022_80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
5
|
Bołt M, Mermela A, Żak P. Influence of Bis‐NHC Ligand on Platinum‐Catalyzed Hydrosilylation of Internal Alkynes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Małgorzata Bołt
- Department of Organometallic Chemistry Faculty of Chemistry Adam Mickiewicz University in Poznan Institution Uniwersytetu Poznanskiego Poznań, 8 61-614 Poznan Poland
| | - Aleksandra Mermela
- Department of Organometallic Chemistry Faculty of Chemistry Adam Mickiewicz University in Poznan Institution Uniwersytetu Poznanskiego Poznań, 8 61-614 Poznan Poland
| | - Patrycja Żak
- Department of Organometallic Chemistry Faculty of Chemistry Adam Mickiewicz University in Poznan Institution Uniwersytetu Poznanskiego Poznań, 8 61-614 Poznan Poland
| |
Collapse
|
6
|
Zhang S, Cao C, Guo W, Zhang Y, Sun M, Yang W, He L, Huang Q. Prominent Spatial Structure and Synergistic Linkage Effects in Bimetallic Titanium Olefin Polymerization Catalysts. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shaomeng Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, the College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Chunpeng Cao
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, the College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Wensi Guo
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, the College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, the College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Min Sun
- State Key Laboratory of Catalytic Materials and Reaction Engineering, Sinopec, Beijing100083, China
| | - Wei Yang
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, the College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Lei He
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, the College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Qigu Huang
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, the College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
7
|
González-Lainez M, Jiménez MV, Azpiroz R, Passarelli V, Modrego FJ, Pérez-Torrente JJ. N-Methylation of Amines with Methanol Catalyzed by Iridium(I) Complexes Bearing an N,O-Functionalized NHC Ligand. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miguel González-Lainez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - M. Victoria Jiménez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Ramón Azpiroz
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Vincenzo Passarelli
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - F. Javier Modrego
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Jesús J. Pérez-Torrente
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| |
Collapse
|
8
|
Investigation of NNN Pincer Ruthenium(II) Complexes with a Pendant Hydroxyl Group for N‐Monomethylation of amines and Nitroarenes by Methanol. ChemCatChem 2022. [DOI: 10.1002/cctc.202101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Zhang M, Liu J, Yang B, Ma L, Wang N, Wei X. Facile Synthesis of a Novel Heterogeneous Rh/COF Catalyst and Its Application in Tandem Selective Transfer Hydrogenation and Monomethylation of Nitro Compounds with Methanol. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mingyue Zhang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianguo Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
| | - Bo Yang
- Guangzhou Special Pressure Equipment Inspection and Research Institute, 9 Keyan Road, Guangzhou 510663, P. R. China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
| | - Nan Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Xiuzhi Wei
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- Department of Engineering Science, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
10
|
Cho JH, Ha Y, Cho A, Park J, Choi J, Won Y, Kim H, Kim BM. A bimetallic PdCu–Fe 3O 4 catalyst with an optimal d-band centre for selective N-methylation of aromatic amines with methanol. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00065b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Highly efficient and selective N-methylation of aniline with methanol is possible with Pd1Cu0.6–Fe3O4 nanoparticle catalyst.
Collapse
Affiliation(s)
- Jin Hee Cho
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwank-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yoonhoo Ha
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ahra Cho
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwank-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jihye Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaeyoon Choi
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwank-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Youngdae Won
- The Research Institute of Basic Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Byeong Moon Kim
- Department of Chemistry, College of Natural Science, Seoul National University, 1 Gwank-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Li W, Yan F, Cai S, Ding L, Li B, Zhang B, Zhang Y, Zhu L. Platinum nanoparticles as recyclable heterogeneous catalyst for selective methylation of amines and imines with formic acid: Indirect utilization of CO2. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Chandra S, Kelm O, Albold U, Hazari AS, Urankar D, Košmrlj J, Sarkar B. Iridium Azocarboxamide Complexes: Variable Coordination Modes, C–H Activation, Transfer Hydrogenation Catalysis, and Mechanistic Insights. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shubhadeep Chandra
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Ola Kelm
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany
| | - Uta Albold
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany
| | - Arijit Singha Hazari
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Damijana Urankar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Janez Košmrlj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische Koordinationschemie, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany
| |
Collapse
|
13
|
Kariuki BM, Platts JA, Newman PD. A hybrid bipy-NHC ligand for the construction of group 11 mixed-metal bimetallic complexes. RSC Adv 2021; 11:34170-34173. [PMID: 35497314 PMCID: PMC9042343 DOI: 10.1039/d1ra06581e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022] Open
Abstract
An asymmetric bipy/NHC ligand L has been used to construct Au/Au, Au/Ag and Au/Cu bimetallic complexes through prior coordination of the NHC to Au(i) and subsequent introduction of the second group 11 metal ion at the bipy donor of the hybrid ligand. The complex [Au(κC-L)2]BF4,1, has been used as the precursor for the formation of [AuAg(κ-C Au,κ2-N,N'Ag-1)2](BF4)2, 2a, [AuCu(κ-C Au,κ2-N,N'Cu-1)2](BF4)2, 2b and [AuAu'(κ-CAu/Au',κ1-NAu/Au'-1)2](BF4)2, 3.
Collapse
Affiliation(s)
- Benson M Kariuki
- School of Chemistry, Cardiff University Park Place Cardiff CF10 3AT Wales UK
| | - James A Platts
- School of Chemistry, Cardiff University Park Place Cardiff CF10 3AT Wales UK
| | - Paul D Newman
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Park Place Cardiff CF10 3AT Wales UK
| |
Collapse
|
14
|
Biswas N, Srimani D. Ru-Catalyzed Selective Catalytic Methylation and Methylenation Reaction Employing Methanol as the C1 Source. J Org Chem 2021; 86:10544-10554. [PMID: 34263597 DOI: 10.1021/acs.joc.1c01185] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Methanol can be employed as a green and sustainable methylating agent to form C-C and C-N bonds via borrowing hydrogen (BH) methodology. Herein we explored the activity of the acridine-derived SNS-Ru pincer for the activation of methanol to apply it as a C1 building block in different reactions. Our catalytic system shows great success toward the β-C(sp3)-methylation reaction of 2-phenylethanols to provide good to excellent yields of the methylated products. We investigated the mechanistic details, kinetic progress, and temperature-dependent product distribution, which revealed the slow and steady generation of in situ formed aldehyde, is the key factor to get the higher yield of the β-methylated product. To establish the environmental benefit of this reaction, green chemistry metrics are calculated. Furthermore, dimerization of 2-naphthol via methylene linkage and formation of N-methylation of amine are also described in this study, which offers a wide range of substrate scope with a good to excellent yield.
Collapse
Affiliation(s)
- Nandita Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
15
|
Wang X, Zhao K, Wang H, Shi F. Selective synthesis of N-monomethyl amines with primary amines and nitro compounds. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01177d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The development of the selective N-monomethylation of primary amines and nitro compounds by using various methylating agents, such as MeX, carbon dioxide, methanol, formaldehyde, formic acid and dimethyl carbonate.
Collapse
Affiliation(s)
- Xinzhi Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing, 100049, China
| | - Kang Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing, 100049, China
| | - Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou, 730000, China
| |
Collapse
|
16
|
Ma SS, Sun R, Zhang ZH, Yu ZK, Xu BH. Ruthenium-catalysed chemoselective alkylation of nitroarenes with alkanols. Org Chem Front 2021. [DOI: 10.1039/d1qo01269j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The alkylation of nitroarenes with akanols catalysed by the phosphinesulfonate ruthenium complex was reported. It displays different reactivity and chemoselectivity depending on the acid–base conditions, delivering diverse anilines from nitroarenes.
Collapse
Affiliation(s)
- Shuang-Shuang Ma
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Sun
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Heng Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Zheng-Kun Yu
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Bao-Hua Xu
- Beijing Key Laboratory of Ionic Liquids Clean Processes, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
17
|
Tamilthendral V, Ramesh R, Malecki JG. Arene diruthenium(II)‐mediated synthesis of imines from alcohols and amines under aerobic condition. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Veerappan Tamilthendral
- Centre for Organometallic Chemistry, School of Chemistry Bharathidasan University Tiruchirappalli India
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry Bharathidasan University Tiruchirappalli India
| | - Jan Grzegorz Malecki
- Department of Crystallography, Institute of Chemistry University of Silesia Katowice Poland
| |
Collapse
|