1
|
Pankov RO, Tarabrin IR, Son AG, Minyaev ME, Prima DO, Ananikov VP. Synthesis and comparative study of (NHC F)PdCl 2Py and (NHC F)Ni(Cp)Cl complexes: investigation of the electronic properties of NHC ligands and complex characteristics. Dalton Trans 2024; 53:12503-12518. [PMID: 39011843 DOI: 10.1039/d4dt01304b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The electron-donating and electron-accepting properties of N-heterocyclic carbene (NHC) ligands play a pivotal role in governing their interactions with transition metals, thereby influencing the selectivity and reactivity in catalytic processes. Herein, we report the synthesis of Pd/NHCF and Ni/NHCF complexes, wherein the electronic parameters of the NHC ligands were systematically varied. By performing a series of controlled structure modifications, we elucidated the influence of the σ-donor and π-acceptor properties of NHC ligands on interactions with the transition metals Pd and Ni and, consequently, the catalytic behavior of Pd and Ni complexes. The present study deepens our understanding of NHC-metal interactions and provides novel information for the rational design of efficient catalysts for organic synthesis.
Collapse
Affiliation(s)
- Roman O Pankov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Ignatii R Tarabrin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexandra G Son
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia
| | - Mikhail E Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Darya O Prima
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Skrodzki M, Zaranek M, Consiglio G, Pawluć P. Transfer Hydrogenation of Vinyl Arenes and Aryl Acetylenes with Ammonia Borane Catalyzed by Schiff Base Cobalt(II) Complexes. Int J Mol Sci 2024; 25:4363. [PMID: 38673948 PMCID: PMC11050580 DOI: 10.3390/ijms25084363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
A series of bench-stable Co(II) complexes containing hydrazone Schiff base ligands were evaluated in terms of their activity and selectivity in carbon-carbon multiple bond transfer hydrogenation. These cobalt complexes, especially a Co(II) precatalyst bearing pyridine-2-yl-N(Me)N=C-(1-methyl)imidazole-2-yl ligand, activated by LiHBEt3, were successfully used in the transfer hydrogenation of substituted styrenes and phenylacetylenes with ammonia borane as a hydrogen source. Key advantages of the reported catalytic system include mild reaction conditions, high selectivity and tolerance to functional groups of substrates.
Collapse
Affiliation(s)
- Maciej Skrodzki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland;
| | - Maciej Zaranek
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland;
| | - Giuseppe Consiglio
- Department of Chemical Science, University of Catania, Via S. Sofia 64, 95125 Catania, Italy
| | - Piotr Pawluć
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland;
| |
Collapse
|
3
|
Rosales J, Jiménez T, Chahboun R, Huertos MA, Millán A, Justicia J. Mild and Selective Hydrogenation of Unsaturated Compounds Using Mn/Water as a Hydrogen Gas Source. Org Lett 2024; 26:2147-2151. [PMID: 38096174 DOI: 10.1021/acs.orglett.3c03664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A mild and highly selective reduction of alkenes and alkynes using Mn/water is described. The highly controlled generation of H2 allows the selective reduction of these compounds in the presence of labile functional groups under mild and environmentally acceptable conditions.
Collapse
Affiliation(s)
- Jennifer Rosales
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, C. U. Fuentenueva s/n, 18071 Granada, Spain
| | - Tania Jiménez
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, C. U. Fuentenueva s/n, 18071 Granada, Spain
| | - Rachid Chahboun
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, C. U. Fuentenueva s/n, 18071 Granada, Spain
| | - Miguel A Huertos
- University of Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Alba Millán
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, C. U. Fuentenueva s/n, 18071 Granada, Spain
| | - José Justicia
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, C. U. Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
4
|
Gawron M, Gilch F, Schmidhuber D, Kelly JA, Horsley Downie TM, Jacobi von Wangelin A, Rehbein J, Wolf R. Counterion Effect in Cobaltate-Catalyzed Alkene Hydrogenation. Angew Chem Int Ed Engl 2024; 63:e202315381. [PMID: 38059406 DOI: 10.1002/anie.202315381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
We show that countercations exert a remarkable influence on the ability of anionic cobaltate salts to catalyze challenging alkene hydrogenations. An evaluation of the catalytic properties of [Cat][Co(η4 -cod)2 ] (Cat=K (1), Na (2), Li (3), (Dep nacnac)Mg (4), and N(n Bu)4 (5); cod=1,5-cyclooctadiene, Dep nacnac={2,6-Et2 C6 H3 NC(CH3 )}2 CH)]) demonstrated that the lithium salt 3 and magnesium salt 4 drastically outperform the other catalysts. Complex 4 was the most active catalyst, which readily promotes the hydrogenation of highly congested alkenes under mild conditions. A plausible catalytic mechanism is proposed based on density functional theory (DFT) investigations. Furthermore, combined molecular dynamics (MD) simulation and DFT studies were used to examine the turnover-limiting migratory insertion step. The results of these studies suggest an active co-catalytic role of the counterion in the hydrogenation reaction through the coordination to cobalt hydride intermediates.
Collapse
Affiliation(s)
- Martin Gawron
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Franziska Gilch
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Daniel Schmidhuber
- Institute of Organic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - John A Kelly
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | | | | | - Julia Rehbein
- Institute of Organic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Robert Wolf
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| |
Collapse
|
5
|
Zhao W, Wang W, Zhou H, Liu Q, Ma Z, Huang H, Chang M. An Asymmetric Hydrogenation/N-Alkylation Sequence for a Step-Economical Route to Indolizidines and Quinolizidines. Angew Chem Int Ed Engl 2023; 62:e202308836. [PMID: 37643998 DOI: 10.1002/anie.202308836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
The direct catalytic asymmetric hydrogenation of pyridines for the synthesis of piperidines remains a challenge. Herein, we report a one-pot asymmetric hydrogenation of pyridines with subsequent N-alkylation using a traceless Brønsted acid activation strategy. Catalyzed by an iridium-BINAP complex, the substrates undergo ketone reduction, cyclization and pyridine hydrogenation in sequence to form indolizidines and quinolizidines. The absolute configuration of the stereocenter of the alcohol is retained and influences the formation of the second stereocenter. Experimental and theoretical mechanistic studies reveal that the chloride anion and certain noncovalent interactions govern the stereoselectivity of the cascade reaction throughout the catalytic process.
Collapse
Affiliation(s)
- Wei Zhao
- College of Chemistry and Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, P. R. China
| | - Wenji Wang
- College of Chemistry and Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, P. R. China
| | - Huan Zhou
- College of Plant Protection, Shaanxi Research Center of Biopesticide Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Qishan Liu
- College of Chemistry and Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, P. R. China
| | - Zhiqing Ma
- College of Plant Protection, Shaanxi Research Center of Biopesticide Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Haizhou Huang
- College of Chemistry and Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, P. R. China
| | - Mingxin Chang
- College of Chemistry and Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, P. R. China
- College of Plant Protection, Shaanxi Research Center of Biopesticide Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
6
|
Dar MO, Mir RH, Mohiuddin R, Masoodi MH, Sofi FA. Metal complexes of xanthine and its derivatives: Synthesis and biological activity. J Inorg Biochem 2023; 246:112290. [PMID: 37327591 DOI: 10.1016/j.jinorgbio.2023.112290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Xanthine and its derivatives are considered an important class of N-heterocyclic purine compounds that have gained significant importance in medicinal chemistry. N-heterocyclic carbene (NHC) and N-coordinated metal complexes of xanthine and its derivatives have revealed a range of new possibilities for their use as therapeutic agents in addition to their established catalytic behavior. The metal complexes of xanthine and its derivatives have been designed and synthesized for the exploration of their potential therapeutic applications. These metal complexes based on the xanthine scaffold exhibited various potential medicinal applications including anticancer, antibacterial, and antileishmanial activity. The metal complexes of xanthine and its derivatives shall pave the way for the rational design and development of new therapeutic agents. In the present comprehensive review, we highlighted the recent advancements in the synthesis and medicinal applications of metal complexes based on N-heterocyclic carbene (NHC) derived from xanthine scaffolds.
Collapse
Affiliation(s)
- Mohammad Ovais Dar
- Department of Pharmaceutical Chemistry, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| | - Reyaz Hassan Mir
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar 190006, J & K, India
| | - Roohi Mohiuddin
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir 190001, India
| | - Mubashir H Masoodi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar 190006, J & K, India
| | - Firdoos Ahmad Sofi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar 190006, J & K, India.
| |
Collapse
|
7
|
Budagumpi S, Keri RS, Nagaraju D, Yhobu Z, Monica V, Geetha B, Kadu RD, Neole N. Progress in the catalytic applications of cobalt N–heterocyclic carbene complexes: Emphasis on their synthesis, structure and mechanism. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Yang W, Fan Q, Yang H, Sun H, Li X. [P, C] Chelate Cobalt(I)-Catalyzed Distinct Selective Hydrosilylation of Alkenes under Mild Conditions. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenjing Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Haiquan Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| |
Collapse
|
9
|
Abstract
Cobalt-NHC complexes have emerged as an attractive class of 3d transition metal catalysts for a broad range of chemical processes, including cross-coupling, hydrogenation, hydrofunctionalization and cycloaddition reactions. Herein, we present a comprehensive review of catalytic methods utilizing cobalt-NHC complexes with a focus on catalyst structure, the role of the NHC ligand, properties of the catalytic system, mechanism and synthetic utility. The survey clearly suggests that the recent emergence of well-defined cobalt-NHC catalysts may have a tremendous utility in the design and application of catalytic reactions using more abundant 3d transition metals.
Collapse
Affiliation(s)
- Sourav Sekhar Bera
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
10
|
Exploring the structure-activity relationship of benzylidene-2,3-dihydro-1H-inden-1-one compared to benzofuran-3(2H)-one derivatives as inhibitors of tau amyloid fibers. Eur J Med Chem 2022; 231:114139. [DOI: 10.1016/j.ejmech.2022.114139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 12/27/2022]
|
11
|
Zhang G. Giant N-heterocyclic carbene-containing macrocycles for cobalt-catalysed hydroboration of alkynes. Chem Commun (Camb) 2022; 58:8109-8112. [DOI: 10.1039/d2cc02815h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Giant N-heterocyclic carbene-containing organic macrocycles larger than “Texas-sized” molecular boxes have been synthesized and structurally characterized. The new macrocyles were employed for the Co-NHC promoted syn-selective hydroboration of alkynes with...
Collapse
|
12
|
Neshat A, Mastrorilli P, Mousavizadeh Mobarakeh A. Recent Advances in Catalysis Involving Bidentate N-Heterocyclic Carbene Ligands. Molecules 2021; 27:95. [PMID: 35011327 PMCID: PMC8746573 DOI: 10.3390/molecules27010095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Since the discovery of persistent carbenes by the isolation of 1,3-di-l-adamantylimidazol-2-ylidene by Arduengo and coworkers, we witnessed a fast growth in the design and applications of this class of ligands and their metal complexes. Modular synthesis and ease of electronic and steric adjustability made this class of sigma donors highly popular among chemists. While the nature of the metal-carbon bond in transition metal complexes bearing N-heterocyclic carbenes (NHCs) is predominantly considered to be neutral sigma or dative bonds, the strength of the bond is highly dependent on the energy match between the highest occupied molecular orbital (HOMO) of the NHC ligand and that of the metal ion. Because of their versatility, the coordination chemistry of NHC ligands with was explored with almost all transition metal ions. Other than the transition metals, NHCs are also capable of establishing a chemical bond with the main group elements. The advances in the catalytic applications of the NHC ligands linked with a second tether are discussed. For clarity, more frequently targeted catalytic reactions are considered first. Carbon-carbon coupling reactions, transfer hydrogenation of alkenes and carbonyl compounds, ketone hydrosilylation, and chiral catalysis are among highly popular reactions. Areas where the efficacy of the NHC based catalytic systems were explored to a lesser extent include CO2 reduction, C-H borylation, alkyl amination, and hydroamination reactions. Furthermore, the synthesis and applications of transition metal complexes are covered.
Collapse
Affiliation(s)
- Abdollah Neshat
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran;
| | - Piero Mastrorilli
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona, I-70125 Bari, Italy;
| | - Ali Mousavizadeh Mobarakeh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran;
| |
Collapse
|
13
|
Timelthaler D, Schöfberger W, Topf C. Selective and Additive-Free Hydrogenation of Nitroarenes Mediated by a DMSO-Tagged Molecular Cobalt Corrole Catalyst. European J Org Chem 2021; 2021:2114-2120. [PMID: 34248412 PMCID: PMC8252576 DOI: 10.1002/ejoc.202100073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Indexed: 12/02/2022]
Abstract
We report on the first cobalt corrole that effectively mediates the homogeneous hydrogenation of structurally diverse nitroarenes to afford the corresponding amines. The given catalyst is easily assembled prior to use from 4-tert-butylbenzaldehyde and pyrrole followed by metalation of the resulting corrole macrocycle with cobalt(II) acetate. The thus-prepared complex is self-contained in that the hydrogenation protocol is free from the requirement for adding any auxiliary reagent to elicit the catalytic activity of the applied metal complex. Moreover, a containment system is not required for the assembly of the hydrogenation reaction set-up as both the autoclave and the reaction vessels are readily charged under a regular laboratory atmosphere.
Collapse
Affiliation(s)
- Daniel Timelthaler
- Institute of Catalysis (INCA)Johannes Kepler University (JKU)4040LinzAustria
| | | | - Christoph Topf
- Institute of Catalysis (INCA)Johannes Kepler University (JKU)4040LinzAustria
| |
Collapse
|