1
|
Kumar R, Babu R, Chakrabortty S, Madhu V, Balaraman E. Catalytic N-Alkylation of (Hetero)Aromatic Amines and Tandem Annulation Reactions. J Org Chem 2024; 89:14720-14739. [PMID: 39374369 DOI: 10.1021/acs.joc.4c01017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A general and practical approach for N-alkylation of heteroaromatic amines with heteroaromatic alcohols is always challenging and rarely reported. Here, we designed and synthesized phosphine-free, robust, and efficient N,N-bidentate-Co(II) complexes for a universal N-alkylation of amines strategy. This present catalytic methodology can be applied to a wide range of substrates by varying alcohols, including aryl, aliphatic, acyclic, and cyclic groups, with heteroaromatic amines such as aminopyridine, 2-aminopyrimidine, and aminoquinoline to provide diverse monoalkylated organonitrogen compounds in good to excellent yields (108 examples). In addition, the utility of the developed catalytic protocol was also extended successfully for the dehydrogenative synthesis of biologically important quinoline derivatives (11 examples). Particularly, 8-aminoquinoline reacted differently with tandem N-alkylated-transfer hydrogenative byproduct (N-benzyl-1,2,3,4-tetrahydroquinolin-8-amine) was obtained, revealing the catalytic activity of the complex I. The reaction proceeded under environmentally benign conditions, which liberates water as the sole byproduct. Notably, a concise synthesis of acetylcholinesterase inhibitors (AChEIs) scaffolds as potential cognition enhancers illustrated the utility of the present protocol. Interestingly, various control and deuterium-labeled experiments were performed, suggesting that the reaction proceeds via the borrowing hydrogen pathway.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, India
| | - Reshma Babu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, India
| | | | - Vedichi Madhu
- Department of Applied Chemistry, Karunya Institute of Technology and Science (Deemed to be University), Coimbatore - 641114, Tamil Nadu, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, India
| |
Collapse
|
2
|
Bushkov NS, Rumyantsev AV, Zhizhin AA, Strelkova TV, Novikov RA, Gutsul EI, Takazova RU, Kitaeva DK, Ustynyuk NA, Zhizhko PA, Zarubin DN. Tungsten Oxide Dispersed on Silica as Robust and Readily Available Oxo/Imido Heterometathesis Catalyst. Chempluschem 2024; 89:e202400029. [PMID: 38589286 DOI: 10.1002/cplu.202400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Continuing our investigation of catalytic oxo/imido heterometathesis as novel water-free method for C=N bond construction, we report here the application of classical transition metal oxides dispersed on silica (MOx/SiO2, M=V, Mo, W) as cheap, robust and readily available alternative to the catalysts prepared via Surface Organometallic Chemistry (SOMC). The oxide materials demonstrated activity in heterometathetical imidation of ketones, WO3/SiO2 being the most efficient. We also describe a new well-defined supported W imido complex (≡SiO)W(=NMes)2(Me2Pyr) (Mes=2,4,6-Me3C6H2, Me2Pyr=2,5-dimethylpyrrolyl) and characterize it with SOMC protocols, which allowed us to identify the position of W on the oxo/imido heterometathesis activity scale (Mo
Collapse
Affiliation(s)
- Nikolai S Bushkov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str., 28, 119334, Moscow, Russia
| | - Andrey V Rumyantsev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str., 28, 119334, Moscow, Russia
- Chemistry Department, Moscow State University, Vorob'evy Gory, 1, 119992, Moscow, Russia
| | - Anton A Zhizhin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str., 28, 119334, Moscow, Russia
| | - Tatyana V Strelkova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str., 28, 119334, Moscow, Russia
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp., 47, 119991, Moscow, Russia
| | - Evgenii I Gutsul
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str., 28, 119334, Moscow, Russia
| | - Rina U Takazova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str., 28, 119334, Moscow, Russia
| | - Dinara K Kitaeva
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str., 28, 119334, Moscow, Russia
| | - Nikolai A Ustynyuk
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str., 28, 119334, Moscow, Russia
| | - Pavel A Zhizhko
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str., 28, 119334, Moscow, Russia
| | - Dmitry N Zarubin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str., 28, 119334, Moscow, Russia
| |
Collapse
|
3
|
Mahato J, Bera PS, Saha TK. Synthesis of imines from the coupling reaction of alcohols and amines catalyzed by phosphine-free cobalt(II) complexes. Org Biomol Chem 2024; 22:4528-4535. [PMID: 38752768 DOI: 10.1039/d4ob00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Phosphine-free, air stable cobalt(II) based complexes (1a and 1b) consisting of ligands L1H2 and L2H2 (L1H2 = N,N'-((1,2-phenylenebis(azaneylylidene))bis(methaneylylidene))diphenol and L2H2 = N,N'-bis(4-diethylaminosalicylidene)-4,5-dichloro-1,2-phenylenediamine) were synthesized and utilized as catalysts in the coupling reaction of alcohols with amines into imines following an acceptorless dehydrogenative pathway. The reactions were carried out in the presence of t-BuOK base with low catalyst loading (1 mol%) in an open atmosphere. The corresponding imines were isolated in moderate to excellent yields. The methodology was screened with different substituted alcohols and amines. The proposed mechanistic pathway of this reaction was ascertained through intermediate mass and 1H NMR analyses. Most of the previously reported 3d transition metal catalysts used in imine synthesis reactions have a phosphine ligand environment, and the reactions were performed under inert conditions. Herein we have developed a sustainable route for the synthesis of imines from the coupling reaction of alcohols with amines under aerial reaction conditions using phosphine-free air stable cobalt catalysts.
Collapse
Affiliation(s)
- Jharna Mahato
- Department of Chemistry, National Institute of Technology Durgapur, West Bengal, 713209, India.
| | - Partha Sarathi Bera
- Department of Chemistry, National Institute of Technology Durgapur, West Bengal, 713209, India.
| | - Tanmoy Kumar Saha
- Department of Chemistry, National Institute of Technology Durgapur, West Bengal, 713209, India.
| |
Collapse
|
4
|
Khatua M, Goswami B, Devi A, Kamal, Hans S, Samanta S. A Phosphine-Oxide Cobalt(II) Complex and Its Catalytic Activity Studies toward Alcohol Dehydrogenation Triggered Direct Synthesis of Imines and Quinolines. Inorg Chem 2024; 63:9786-9800. [PMID: 38739882 DOI: 10.1021/acs.inorgchem.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Herein, a new pincer-like amino phosphine donor ligand, H2L1, and its phosphine-oxide analog, H2L2, were synthesized. Subsequently, cobalt(II) complexes 1 and 2 were synthesized by the reaction of anhydrous Co(II)Cl2 with ligands H2L1 and H2L2, respectively. The ligands and complexes were fully characterized by various physicochemical and spectroscopic characterization techniques. Finally, the identity of the complexes 1 and 2 was confirmed by single crystal X-ray structure determination. The phosphine ligand containing complex 1 was converted to the phosphine oxide ligand containing complex 2 in air in acetonitrile solution. Both complexes 1 and 2 were investigated as precatalysts for alcohol dehydrogenation-triggered synthesis of imines in air. The phosphine-oxide complex 2 was more efficient than the phosphine complex 1. A wide array of alcohols and amines were successfully reacted in a mild condition to result in imines in good to excellent yields. Precatalyst 2 was also highly efficient for the synthesis of varieties of quinolines in air. As H2L2 in 2 has side arms that can be deprotonated, we investigated complex 2 for its base (KOtBu) promoted deprotonation events by various spectroscopic studies and DFT calculations. These studies have shown that mono deprotonation of the amine side arm attached to the pyridine is quite feasible, and deprotonation of complex 2 leads to a dearomatized pyridyl ring containing complex 2a. The mechanistic investigations of the catalytic reaction, by a combination of experimental and computational studies, have suggested that the dearomatized complex, 2a acted as an active catalyst. The reaction proceeded through the hydride transfer pathway. The activation barrier of this step was calculated to be 26.5 kcal/mol, which is quite consistent with the experimental reaction temperature under aerobic conditions. Although various pincer-like complexes are explored for such reactions, phosphine oxide ligand-containing complexes are still unexplored.
Collapse
Affiliation(s)
- Manas Khatua
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Bappaditya Goswami
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Ambika Devi
- Department of Chemistry, Indian Institute of Technology (IIT) Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India
| | - Kamal
- Department of Chemistry, Indian Institute of Technology (IIT) Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India
| | - Shivali Hans
- Department of Chemistry, Indian Institute of Technology (IIT) Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India
| | - Subhas Samanta
- Department of Chemistry, Indian Institute of Technology (IIT) Jammu, Jagti, Jammu, Jammu and Kashmir 181221, India
| |
Collapse
|
5
|
Ke Z, Wang Y, Zhao Y, Tang M, Zeng W, Wang Y, Chang X, Han B, Liu Z. Ionic-Liquid Hydrogen-Bonding Promoted Alcohols Amination over Cobalt Catalyst via Dihydrogen Autotransfer Mechanism. CHEMSUSCHEM 2023; 16:e202300513. [PMID: 37191041 DOI: 10.1002/cssc.202300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/17/2023]
Abstract
Higher amines are important high-valuable chemicals with wide applications, and amination of alcohols is a green route to them, which however generally suffers from harsh reaction conditions and use of equivalent base. Herein, we report an ionic-liquid (IL) hydrogen-bonding promoted dihydrogen autotransfer strategy for amination of alcohols to higher amines over cobalt catalyst under base-free conditions. Co(BF4 )2 ⋅ 6 H2 O complexed with triphos and IL (e. g., tetrabutylphosphonium tetrafluoroborate, [P4444 ][BF4 ]) shows high performances for the reaction and is tolerant of a wide scope of amines and alcohols, affording higher amines in good to excellent yields. Mechanism investigation indicates that the [BF4 ]- anion activates the alcohol via hydrogen bonding, promoting transfer of both hydroxyl H and α-H atoms of alcohol to the cobalt catalyst to form an aldehyde intermediate and cobalt dihydride complex, which are involved in the subsequent reductive amination. This strategy provides a green and effective route for alcohol amination, which may have promising applications in alcohol-involved alkylation reactions.
Collapse
Affiliation(s)
- Zhengang Ke
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yuepeng Wang
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfei Zhao
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minhao Tang
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zeng
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Wang
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqian Chang
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhimin Liu
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Pal A, Das KM, Thakur A. Microwave-Assisted Synthesis of E-Aldimines, N-Heterocycles, and H 2 by Dehydrogenative Coupling of Benzyl Alcohol and Aniline Derivatives Using CoCl 2 as a Catalyst. J Org Chem 2023. [PMID: 37294694 DOI: 10.1021/acs.joc.3c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The acceptorless dehydrogenative coupling (ADC) between alcohols and amines to produce imines has been achieved mostly by employing precious-metal-based complexes or complexes of earth-abundant metal ions with sensitive and complicated ligand systems as catalysts mostly under harsh reaction conditions. Methodologies using readily available earth-abundant metal salts as catalysts without the requirement of ligand, oxidant, or any external additives are not explored. We report an unprecedented microwave-assisted CoCl2-catalyzed acceptorless dehydrogenative coupling of benzyl alcohol and amine for the synthesis of E-aldimines, N-heterocycles, and H2 under mild condition, without any complicated exogenous ligand template, oxidant, or other additives. This environmentally benign methodology exhibits broad substrate scope (43 including 7 new products) with fair functional-group tolerance on the aniline ring. Detection of metal-associated intermediate by gas chromatography (GC) and HRMS, H2 detection by GC, and kinetic isotope effect reveal the mechanism of this CoCl2-catalyzed reaction to be via ADC. Furthermore, kinetic experiments and Hammett analysis with variation in the nature of substituents over the aniline ring reveal the insight into the reaction mechanism with different substituents.
Collapse
Affiliation(s)
- Adwitiya Pal
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Krishna Mohan Das
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| |
Collapse
|
7
|
Himmelbauer D, Talmazan R, Weber S, Pecak J, Thun‐Hohenstein A, Geissler M, Pachmann L, Pignitter M, Podewitz M, Kirchner K. No Transition Metals Required - Oxygen Promoted Synthesis of Imines from Primary Alcohols and Amines under Ambient Conditions. Chemistry 2023; 29:e202300094. [PMID: 36866600 PMCID: PMC10946877 DOI: 10.1002/chem.202300094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Indexed: 03/04/2023]
Abstract
The synthesis of imines denotes a cornerstone in organic chemistry. The use of alcohols as renewable substituents for carbonyl-functionality represents an attractive opportunity. Consequently, carbonyl moieties can be in situ generated from alcohols upon transition-metal catalysis under inert atmosphere. Alternatively, bases can be utilized under aerobic conditions. In this context, we report the synthesis of imines from benzyl alcohols and anilines, promoted by KOt Bu under aerobic conditions at room temperature, in the absence of any transition-metal catalyst. A detailed investigation of the radical mechanism of the underlying reaction is presented. This reveals a complex reaction network fully supporting the experimental findings.
Collapse
Affiliation(s)
- Daniel Himmelbauer
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163-ACA-1060WienAustria
| | - Radu Talmazan
- Institute of Materials ChemistryTU WienGetreidemarkt 9A-1060WienAustria
| | - Stefan Weber
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163-ACA-1060WienAustria
| | - Jan Pecak
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163-ACA-1060WienAustria
| | | | | | - Lukas Pachmann
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163-ACA-1060WienAustria
| | - Marc Pignitter
- Department of Physiological ChemistryFaculty of ChemistryUniversity of ViennaAlthanstrasse 141090WienAustria
| | - Maren Podewitz
- Institute of Materials ChemistryTU WienGetreidemarkt 9A-1060WienAustria
| | - Karl Kirchner
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163-ACA-1060WienAustria
| |
Collapse
|
8
|
Jafarzadeh M, Sobhani SH, Gajewski K, Kianmehr E. Recent advances in C/ N-alkylation with alcohols through hydride transfer strategies. Org Biomol Chem 2022; 20:7713-7745. [PMID: 36169049 DOI: 10.1039/d2ob00706a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the most recent reports in three powerful and ever-growing fields of borrowing hydrogen, acceptorless dehydrogenative coupling, and base-mediated hydride transfer strategies; which pave the way for generating reactive intermediates via shuttling hydrogen (or hydride) between starting materials without any need for an external hydrogen source to easily construct more complex structures. There is a thorough focus on diversifying the utility of alcohols for C/N-alkylation leading to the synthesis of branched ketones, alcohols, amines, indols, and 6-membered nitrogen-containing heterocycles such as pyridines and pyrimidines, various transformations with the focus on C-C and C-N bond-forming reactions via metal-based catalysis or metal-free approaches in this context to give a global overview in this area.
Collapse
Affiliation(s)
- Mahdi Jafarzadeh
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| | - Seyed Hasan Sobhani
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| | | | - Ebrahim Kianmehr
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| |
Collapse
|
9
|
Salahdin OD, Patra I, Ansari MJ, Emad Izzat S, Uktamov KF, Abid MK, Mahdi AB, Hammid AT, Mustafa YF, Sharma H. Synthesis of efficient cobalt-metal organic framework as reusable nanocatalyst in the synthesis of new 1,4-dihydropyridine derivatives with antioxidant activity. Front Chem 2022; 10:932902. [PMID: 36157044 PMCID: PMC9493035 DOI: 10.3389/fchem.2022.932902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022] Open
Abstract
Efficient cobalt-metal organic framework (Co-MOF) was prepared via a controllable microwave-assisted reverse micelle synthesis route. The products were characterized by SEM image, N2 adsorption/desorption isotherm, FTIR spectrum, and TG analysis. Results showed that the products have small particle size distribution, homogenous morphology, significant surface area, and high thermal stability. The physicochemical properties of the final products were remarkable compared with other MOF samples. The newly synthesized nanostructures were used as recyclable catalysts in the synthesis of 1,4-dihydropyridine derivatives. After the confirmation of related structures, the antioxidant activity of derivatives based on the DPPH method was evaluated and the relationship between structures and antioxidant activity was observed. In addition to recyclability, the catalytic activity of Co-MOF studied in this research has remarkable effects on the synthesis of 1,4 dihydropyridine derivatives.
Collapse
Affiliation(s)
| | - Indrajit Patra
- An Independent Researcher, PhD from NIT Durgapur, Durgapur, West Bengal, India
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | | | | | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed B. Mahdi
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Himanshu Sharma
- Department of Computer Engineering and Applications, GLA University Mathura, Uttar Pradesh, India
| |
Collapse
|
10
|
Cadwallader D, Tiburcio TR, Cieszynski GA, Le CM. Synthesis of Carbamoyl Fluorides Using a Difluorophosgene Surrogate Derived from Difluorocarbene and Pyridine N-Oxides. J Org Chem 2022; 87:11457-11468. [PMID: 35972076 DOI: 10.1021/acs.joc.2c01017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a method for the synthesis of carbamoyl fluorides from secondary amines using bench-stable, inexpensive, and readily accessible starting materials that, when combined, yield a surrogate for toxic difluorophosgene (COF2) gas. In contrast to state-of-the-art methods for the synthesis of carbamoyl fluorides, our protocol does not require the use of pre-functionalized substrates, the preparation of light-, temperature-, and/or moisture-sensitive chemicals, or the application of explosive fluorinating reagents.
Collapse
Affiliation(s)
- Dusty Cadwallader
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Tristan R Tiburcio
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - George A Cieszynski
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Christine M Le
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
11
|
Lu Y, Chai H, Yu K, Huang C, Li Y, Wang J, Ma J, Tan W, Zhang G. A reusable MOF supported single-site nickel-catalyzed direct N-alkylation of anilines with alcohols. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Podyacheva E, Afanasyev OI, Vasilyev DV, Chusov D. Borrowing Hydrogen Amination Reactions: A Complex Analysis of Trends and Correlations of the Various Reaction Parameters. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Evgeniya Podyacheva
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Oleg I. Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Dmitry V. Vasilyev
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstr. 3, 91058 Erlangen, Germany
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| |
Collapse
|
13
|
Borthakur I, Sau A, Kundu S. Cobalt-catalyzed dehydrogenative functionalization of alcohols: Progress and future prospect. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214257] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Switching between borrowing hydrogen and acceptorless dehydrogenative coupling by base transition-metal catalysts. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Paudel K, Xu S, Ding K. Switchable Cobalt-Catalyzed α-Olefination and α-Alkylation of Nitriles with Primary Alcohols. Org Lett 2021; 23:5028-5032. [PMID: 34143638 DOI: 10.1021/acs.orglett.1c01553] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first switchable α-olefination and α-alkylation of nitriles with primary alcohols catalyzed by a well-defined base transition-metal Co complex was presented. A broad variety of nitriles and primary alcohols are selectively and efficiently converted to the corresponding products by this method. It is noteworthy that the transformation is environmentally benign and atom efficient with H2 and H2O being the sole byproducts.
Collapse
Affiliation(s)
- Keshav Paudel
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States.,Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Shi Xu
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Keying Ding
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States.,Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| |
Collapse
|
16
|
Zhang MJ, Ge XL, Young DJ, Li HX. Recent advances in Co-catalyzed C–C and C–N bond formation via ADC and ATH reactions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Pandey B, Xu S, Ding K. Switchable β-alkylation of Secondary Alcohols with Primary Alcohols by a Well-Defined Cobalt Catalyst. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bedraj Pandey
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Shi Xu
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Keying Ding
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
- Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| |
Collapse
|