1
|
Li Q, Sun H, Li X, Fuhr O, Fenske D. Synthesis of Dinuclear Cobalt Silylene Complexes and Their Catalytic Activity for Alkene Hydrosilylation Reactions. Inorg Chem 2024; 63:18563-18573. [PMID: 39324828 DOI: 10.1021/acs.inorgchem.4c01695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
A novel dinuclear silylene cobalt complex [((Me3P)2Co)(PMe2)(CoCl(PMe3))(Si(NCH2PPh2)2C6H4)] (1) supported by the [PSi(silylene)P] ligand was prepared through the reaction of N-heterocyclic [PSiP] pincer ligand L1 (HSiCl(NCH2PPh2)2C6H4) with Co(PMe3)4. Complex [((Me3P)2Co)2(Si(NCH2PPh2)2C6H4)] (2) was formed through the reaction of complex 1 with MeLi. To the best of our knowledge, complexes 1 and 2 are the first examples of dinuclear silylene cobalt complexes supported by the [PSi(silylene)P] ligand. A new preligand L2 (SiCl2(NCH2PPh2)2C6H4) was synthesized, and the reaction of preligand L2 with Co(PMe3)4 afforded silyl cobalt complex [((Me3P)2Co)(SiCl(NCH2PPh2)2C6H4)] (3). The reaction of 3 with CO delivered cobalt carbonyl complex [((Me3P)(CO)Co)(Si(NCH2PPh2)2C6H4)]2O (4). The catalytic activity of cobalt complexes 1-4 on the hydrosilylation of alkenes was explored. Among the four complexes, complex 1 has the best catalytic activity. The catalytic process could be promoted with NaBHEt3 as an additive, and a complete conversion with an excellent selectivity of 98:2 (b/l) could be reached at 120 °C within 8 min for aryl alkenes. A possible catalytic cycle was proposed on the basis of the experimental results and literature reports, with a cobalt hydride complex as an active intermediate. The molecular structure of complexes 1-4 was determined by single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Qingshuang Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dieter Fenske
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Zhang M, Dong Y, Li Q, Sun H, Li X. Catalytic Properties of [PSiP] Pincer Cobalt(II) Chlorides Supported by Trimethylphosphine for Alkene Hydrosilylation Reactions. Inorg Chem 2024; 63:8807-8815. [PMID: 38688019 DOI: 10.1021/acs.inorgchem.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In this paper, six silyl [PSiP] pincer cobalt(II) chlorides 1-6 [(2-Ph2PC6H4)2MeSiCo(Cl)(PMe3)] (1), [(2-Ph2PC6H4)2HSiCo(Cl)(PMe3)] (2), [(2-Ph2PC6H4)2PhSiCo(Cl)(PMe3)] (3), [(2-iPr2PC6H4)2HSiCo(Cl)(PMe3)] (4), [(2-iPr2PC6H4)2MeSiCo(Cl)(PMe3)] (5), and [(2-iPr2PC6H4)2PhSiCo(Cl)(PMe3)] (6)) were prepared from the corresponding [PSiP] pincer preligands (L1-L6), CoCl2 and PMe3 by Si-H bond activation. The catalytic activity of complexes 1-6 for alkene hyrdosilylation was studied. It was confirmed that complex 1 is the best catalyst with excellent regioselectivity among the six complexes. Using 1 as the catalyst, the catalytic reaction was completed within 1 h at 50 °C, predominantly affording Markovnikov products for aryl alkenes and anti-Markovnikov products for aliphatic alkene substrates. During the investigation of the catalytic mechanism, the Co(II) hydrides [(2-Ph2PC6H4)2MeSiCo(H)(PMe3)] (8) and [(2-iPr2PC6H4)2MeSiCo(H)(PMe3)] (9) were obtained from the stoichiometric reactions of complex 1 and 5 with NaBHEt3, respectively. Complexes 8 and 9 could also be obtained by the reactions of preligands L1 and L5 with Co(PMe3)4 via Si-H bond cleavage. More experiments corroborated that complex 8 is the real catalyst for this catalytic system. Under the same catalytic conditions as complex 1, using complex 8 as a catalyst, complete conversion of styrene was also achieved in 1 h, and the selectivity remained unchanged. Based on the experimental results, we propose a plausible mechanism for this catalytic reaction. The addition of B(C6F5)3 to catalyst 1 can reverse the selectivity of styrene hydrosilylation from the Markovnikov product as the main product (b/l = 99:1) to the anti-Markovnikov product as the main product (b/l = 40:60). Further study indicated that using the (CoCl2 + L1) system instead of complex 1, the selectivity was changed from Markovnikov to anti-Markovnikov product (b/l = 1:99.7). Therefore, the selectivity for the substrate styrene is influenced by the presence of a PMe3 ligand. The different selectivities may be caused by different active species. For the system of complex 1, a cobalt(II) hydride is the real catalyst, but for the (CoCl2 + L1) system, a cobalt(I) complex is proposed as active species. The molecular structures of Co(II) compounds 5 and 9 were resolved by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Min Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China
| | - Yanhong Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China
| | - Qingshuang Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
3
|
Polyethylene glycol-functionalized N,P-ligands enhance catalytic properties of cobalt complexes for the hydrosilylation reaction. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
4
|
Yang W, Fan Q, Yang H, Sun H, Li X. [P, C] Chelate Cobalt(I)-Catalyzed Distinct Selective Hydrosilylation of Alkenes under Mild Conditions. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenjing Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Haiquan Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| |
Collapse
|
5
|
Luo C, Lu WH, Wang GQ, Zhang ZB, Li HQ, Han P, Yang D, Jing LH, Wang C. Photocatalytic Synthesis of Diarylmethyl Silanes via 1,6-Conjugate Addition of Silyl Radicals to p-Quinone Methides. J Org Chem 2022; 87:3567-3576. [PMID: 35133837 DOI: 10.1021/acs.joc.1c03125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel photocatalytic method for the preparation of diarylmethyl silanes was reported through silyl radicals addition strategy to p-QMs (p-quinone methides). This protocol could tolerate a variety of functional groups affording the corresponding silylation products with moderate to excellent yields. The resulting silylation products could be easily converted into a series of bioactive GPR40 agonists and useful p-QMs precursors for the synthesis of compounds possessing both quaternary carbon centers and silicon substituents through simple operation. A plausible mechanism of silyl radicals to p-QMs was proposed on the basis of experimental results and previous literature.
Collapse
Affiliation(s)
- Cong Luo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Wen-Hua Lu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Guo-Qin Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Zheng-Bing Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Hai-Qiong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Chen Wang
- Petro China Southwest Oil & Gas Field Company, Chengdu 610000, China
| |
Collapse
|
6
|
Huang W, Lu J, Fan Q, Li X, Hinz A, Sun H. Synthesis of aryl cobalt and iron complexes and their catalytic activity on hydrosilylation of alkenes. NEW J CHEM 2022. [DOI: 10.1039/d1nj06133j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Four aryl Co and Fe complexes, (F4C5N)CoCl(PMe3)3 (1), (F4C5N)Fe(PMe3)4 (2), (F5C6)CoCl(PMe3)3 (3) and (F4C5)FeCl(PMe3)3 (4), were synthesized from the reactions of 3-chloro-2,4,5,6-tetrafluoro-pyridine and chloropentafluorobenzene with Co(PMe3)4 and Fe(PMe3)4, respectively.
Collapse
Affiliation(s)
- Wei Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Jiahui Lu
- School of Chemsitry and Chemical Engineering, University of Jinan, 250022 Jinan, People's Republic of China
| | - Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Alexander Hinz
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Engesserstr.15, 76131 Karlsruhe, Germany
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| |
Collapse
|
7
|
Yang W, Fan Q, Du X, Xie S, Huang W, Li X, Sun H, Fuhr O, Fenske D. [P,C]-Chelate Cobalt(III) Hydride Catalyzed Hydrosilylation of Alkenes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenjing Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, PR China
| | - Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, PR China
| | - Xinyu Du
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, PR China
| | - Shangqing Xie
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, PR China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, PR China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, PR China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, PR China
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dieter Fenske
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|