1
|
Shinjo-Nagahara S, Okada Y, Hiratsuka G, Kitano Y, Chiba K. Improved Electrochemical Peptide Synthesis Enabled by Electron-Rich Triaryl Phosphines. Chemistry 2024; 30:e202402552. [PMID: 38981861 DOI: 10.1002/chem.202402552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
While remarkable progress has been made in the development of peptide medicines, many problems related to peptide synthesis remain unresolved. Previously, we reported electrochemical peptide synthesis using a phosphine as a potentially recyclable coupling reagent. However, there was room for improvement from the point of view of reaction efficiency, especially in the carboxylic acid activation step and the peptide bond formation step. To overcome these challenges, we searched for the optimal phosphine. Among phosphines with various electronic properties, we found that electron-rich triaryl phosphines improved the reaction efficiency. Consequently, we successfully performed electrochemical peptide synthesis on sterically hindered and valuable amino acids. We also synthesized oligopeptides that were challenging with our previous method. Finally, we examined the effect of substituents on the phosphine cations, and gained some insights into reactivity, which will aid researchers designing reactions involving phosphine cations.
Collapse
Affiliation(s)
- Shingo Shinjo-Nagahara
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8- Saiwai-cho, Fuchu Tokyo, 183-8509, Japan
| | - Yohei Okada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8- Saiwai-cho, Fuchu Tokyo, 183-8509, Japan
| | - Goki Hiratsuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8- Saiwai-cho, Fuchu Tokyo, 183-8509, Japan
| | - Yoshikazu Kitano
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8- Saiwai-cho, Fuchu Tokyo, 183-8509, Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8- Saiwai-cho, Fuchu Tokyo, 183-8509, Japan
| |
Collapse
|
2
|
Zhao P, Liu M, Li Y, Wang L, Duan Z. Reactions of Benzyl Phosphine Oxide/Sulfide with (COCl) 2: Synthesis of Novel Acyl Chloride-Substituted Chlorophosphonium Ylides. J Org Chem 2024; 89:14305-14314. [PMID: 39316752 DOI: 10.1021/acs.joc.4c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
New reactions of benzyl phosphine oxide/sulfide with oxalyl chloride are presented. The resulting reactive intermediates, acyl chloride-substituted chlorophosphonium ylides, are capable of undergoing esterification and Friedel-Crafts acylation reactions, ultimately yielding either methyl 2-(2-bromophenyl)-2-(diphenylphosphoryl)acetate or β-carbonyl-diarylphosphine oxide derivatives. Additionally, when an alkynyl group is contained in the acyl chloride-substituted chlorophosphonium ylide, intramolecular cyclization occurs, leading to the formation of a pair of trans- and cis-dichlorophosphonyl benzofulvene isomers. The generation process of acyl chloride-substituted chlorophosphonium ylide was carefully monitored by using 31P{1H} NMR spectroscopy, and a plausible reaction mechanism was proposed.
Collapse
Affiliation(s)
- Peng Zhao
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Mengting Liu
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Li
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Wang
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Zheng Duan
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Kuziola J, Nöthling N, Leutzsch M, Cornella J. Synthesis and characterization of chlorotriarylbismuthonium salts. Chem Commun (Camb) 2024; 60:10532-10535. [PMID: 39229666 PMCID: PMC11372555 DOI: 10.1039/d4cc03364g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
This work reports the synthesis and structural study of a family of chlorotriarylbismuthonium salts. The abstraction of a chlorine atom with NaBArF from triarylbismuth dichloride species leads to monomeric and dimeric chlorotriarylbismuthonium species, which show a distinct behavior in solution and solid-state in comparison to their fluorotriarylbismuthonium analogues.
Collapse
Affiliation(s)
- Jennifer Kuziola
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
4
|
Purwa M, Chandrakanth G, Rana A, Mottafegh A, Kumar S, Kim DP, Singh AK. Auto-Optimized Electro-Flow Reactor Platform for the in-situ Reduction of P(V) Oxide to P(III) and Their Application. Chem Asian J 2024; 19:e202400438. [PMID: 38923297 DOI: 10.1002/asia.202400438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Trivalent phosphine catalysis is mostly utilized to activate the carbon-carbon multiple bonds to form carbanion intermediate species and is highly sensitive to certain variables. Random manual multi-variables are critical for understanding the batch disabled regeneration of trivalent phosphine chemistry. We need the artificial intelligence-based system which can change the variable based on previously conducted failed experiment. Herein, we report an auto-optimized electro-micro-flow reactor platform for the in-situ reduction of stable P(V) oxide to sensitive P(III) and further utilized the method for Corey-Fuchs reaction.
Collapse
Affiliation(s)
- Mandeep Purwa
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Gaykwad Chandrakanth
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Abhilash Rana
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Amirreza Mottafegh
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sanjeev Kumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ajay K Singh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
5
|
Pietras N, Frąckowiak D, Kownacki I. Ball-Milling toward Nickel(II) Diphosphine Complexes for Direct Use in Catalysis. CHEMSUSCHEM 2024:e202400545. [PMID: 38860859 DOI: 10.1002/cssc.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024]
Abstract
Mechanochemistry turned out to be a powerful synthetic tool enabling the first efficient synthesis of nickel(II) complexes with diphosphines. It has been demonstrated that solventless ball-milling of nickel(II) halides with diphosphines leads to the [NiX2(diphosphine)] type compounds, which can be directly used in catalysis without any purification. Moreover, it was confirmed that despite the presence of impurities in the resulting complexes, their catalytic activity remains identical to those obtained via traditional solvent-based methods.
Collapse
Affiliation(s)
- Natalia Pietras
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Dawid Frąckowiak
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Ireneusz Kownacki
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| |
Collapse
|
6
|
Zhang J, Kong WY, Guo W, Tantillo DJ, Tang Y. Combined Computational and Experimental Study Reveals Complex Mechanistic Landscape of Brønsted Acid-Catalyzed Silane-Dependent P═O Reduction. J Am Chem Soc 2024; 146:13983-13999. [PMID: 38736283 DOI: 10.1021/jacs.4c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The reaction mechanism of Brønsted acid-catalyzed silane-dependent P═O reduction has been elucidated through combined computational and experimental methods. Due to its remarkable chemo- and stereoselective nature, the Brønsted acid/silane reduction system has been widely employed in organophosphine-catalyzed transformations involving P(V)/P(III) redox cycle. However, the full mechanistic profile of this type of P═O reduction has yet to be clearly established to date. Supported by both DFT and experimental studies, our research reveals that the reaction likely proceeds through mechanisms other than the widely accepted "dual activation mode by silyl ester" or "acid-mediated direct P═O activation" mechanism. We propose that although the reduction mechanisms may vary with the substitution patterns of silane species, Brønsted acid generally activates the silane rather than the P═O group in transition structures. The proposed activation mode differs significantly from that associated with traditional Brønsted acid-catalyzed C═O reduction. The uniqueness of P═O reduction originates from the dominant Si/O═P orbital interactions in transition structures rather than the P/H-Si interactions. The comprehensive mechanistic landscape provided by us will serve as a guidance for the rational design and development of more efficient P═O reduction systems as well as novel organophosphine-catalyzed reactions involving P(V)/P(III) redox cycle.
Collapse
Affiliation(s)
- Jingyang Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Wentao Guo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Uehara D, Adachi S, Tsubouchi A, Okada Y, Zhdankin VV, Yoshimura A, Saito A. Peptide coupling using recyclable bicyclic benziodazolone. Chem Commun (Camb) 2024; 60:956-959. [PMID: 38131348 DOI: 10.1039/d3cc04431a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We report a greener peptide coupling using bicyclic benziodazolone and triarylphosphine as coupling reagents. Bicyclic benziodazolone also works as a base and can be recovered as the corresponding iodine(I) compound after use, which can be converted to the original iodine(III) reagent by electrolytic oxidation.
Collapse
Affiliation(s)
- Daigo Uehara
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Sota Adachi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Akira Tsubouchi
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Yohei Okada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota, Duluth, MN, 55812, USA
| | - Akira Yoshimura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Akio Saito
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
8
|
Rossino G, Marchese E, Galli G, Verde F, Finizio M, Serra M, Linciano P, Collina S. Peptides as Therapeutic Agents: Challenges and Opportunities in the Green Transition Era. Molecules 2023; 28:7165. [PMID: 37894644 PMCID: PMC10609221 DOI: 10.3390/molecules28207165] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Peptides are at the cutting edge of contemporary research for new potent, selective, and safe therapeutical agents. Their rise has reshaped the pharmaceutical landscape, providing solutions to challenges that traditional small molecules often cannot address. A wide variety of natural and modified peptides have been obtained and studied, and many others are advancing in clinical trials, covering multiple therapeutic areas. As the demand for peptide-based therapies grows, so does the need for sustainable and environmentally friendly synthesis methods. Traditional peptide synthesis, while effective, often involves environmentally draining processes, generating significant waste and consuming vast resources. The integration of green chemistry offers sustainable alternatives, prioritizing eco-friendly processes, waste reduction, and energy conservation. This review delves into the transformative potential of applying green chemistry principles to peptide synthesis by discussing relevant examples of the application of such approaches to the production of active pharmaceutical ingredients (APIs) with a peptide structure and how these efforts are critical for an effective green transition era in the pharmaceutical field.
Collapse
Affiliation(s)
- Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Emanuela Marchese
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
- Department of Health Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy
| | - Giovanni Galli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Francesca Verde
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Matteo Finizio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Massimo Serra
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Pasquale Linciano
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| |
Collapse
|
9
|
Yin K, Wei M, Wang Z, Luo W, Li L. Tertiary Amine-Mediated Reductions of Phosphine Oxides to Phosphines. Org Lett 2023; 25:5236-5241. [PMID: 37428151 DOI: 10.1021/acs.orglett.3c01690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The reduction of phosphine oxides without the use of highly reactive reductants represents a safer and more sustainable solution for recycling of organophosphorus compounds. Herein, we disclose an N,N,N',N'-tetramethylethylenediamine (TMEDA)-mediated reduction via an unusual intermolecular hydride transfer. Mechanistic studies suggest that TMEDA serves as a hydride donor, while the P(V) halophosphonium salt acts as the hydride acceptor. This methodology provides a scalable and efficient protocol to reduce phosphine oxides under mild conditions.
Collapse
Affiliation(s)
- Keshu Yin
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Mingjie Wei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Zhenguo Wang
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wenjun Luo
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Le Li
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
10
|
Xue J, Zhang YS, Huan Z, Yang JD, Cheng JP. Deoxygenation of Phosphine Oxides by P III/P V═O Redox Catalysis via Successive Isodesmic Reactions. J Am Chem Soc 2023. [PMID: 37410888 DOI: 10.1021/jacs.3c05270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Deoxygenation of phosphine oxides is of great significance to synthesis of phosphorus ligands and relevant catalysts, as well as to the sustainability of phosphorus chemistry. However, the thermodynamic inertness of P═O bonds poses a severe challenge to their reduction. Previous approaches in this regard rely primarily on a type of P═O bond activation with either Lewis/Brønsted acids or stoichiometric halogenating reagents under harsh conditions. Here, we wish to report a novel catalytic strategy for facile and efficient deoxygenation of phosphine oxides via successive isodesmic reactions, whose thermodynamic driving force for breaking the strong P═O bond was compensated by a synchronous formation of another P═O bond. The reaction was enabled by PIII/P═O redox sequences with the cyclic organophosphorus catalyst and terminal reductant PhSiH3. This catalytic reaction avoids the use of the stoichiometric activator as in other cases and features a broad substrate scope, excellent reactivities, and mild reaction conditions. Preliminary thermodynamic and mechanistic investigations disclosed a dual synergistic role of the catalyst.
Collapse
Affiliation(s)
- Jing Xue
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Shan Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhen Huan
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Dong Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
11
|
Xiao J, Wang J, Zhang H, Zhang J, Han LB. Reduction of Triphenylphosphine Oxide to Triphenylphosphine by Phosphonic Acid. J Org Chem 2023; 88:3909-3915. [PMID: 36857492 DOI: 10.1021/acs.joc.2c02807] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
A novel method for the iodine-mediated reduction of phosphine oxides (sulfides) to phosphines using phosphonic acid under solvent-free conditions is described. By using a combination of H3PO3 and I2, both tertiary monophosphine oxides and bis-phosphine oxides were reduced under this system, readily producing monodentate and bidentate phosphines, respectively, in good yields. Notably, chiral (R)-(+)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl dioxide could be also tolerated without racemization. This new approach is inexpensive and features simple conditions and a wide substrate scope.
Collapse
Affiliation(s)
- Jing Xiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jie Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Huimin Zhang
- Zhejiang Yangfan New Materials Company, Ltd., Shangyu, Zhejiang 312369, China
| | - Jianqiu Zhang
- Zhejiang Yangfan New Materials Company, Ltd., Shangyu, Zhejiang 312369, China
| | - Li-Biao Han
- Zhejiang Yangfan New Materials Company, Ltd., Shangyu, Zhejiang 312369, China.,Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|
12
|
Cressy D, Akula M, Frederick A, Shipley K, Osborne D. A method for the nucleophilic fluorination of 4-dimethylaminopyridine (DMAP) pyridinium salts. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2022.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
Großmann LM, Beier V, Duttenhofer L, Lennartz L, Opatz T. An Iodide-Mediated Anodic Amide Coupling. Chemistry 2022; 28:e202201768. [PMID: 35835720 PMCID: PMC9804404 DOI: 10.1002/chem.202201768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 01/05/2023]
Abstract
The ubiquity of amide bonds, present in natural products and common pharmaceuticals renders this functional group one of the most prevalent in organic chemistry. Despite its importance and a wide variety of existing methods for its formation, the latter still can be a challenge for classical activating reagents such as chloridating agents or carbodiimides. As the spent reagents often cannot be recycled, the development of more sustainable methods is highly desirable. Herein, we report an operationally simple and mild indirect electrochemical protocol to effect the condensation of carboxylic acids with amines, forming a wide variety of carboxamides.
Collapse
Affiliation(s)
- Luca Marius Großmann
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Vera Beier
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Lea Duttenhofer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Laura Lennartz
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Till Opatz
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
14
|
Roediger S, Leutenegger SU, Morandi B. Nickel-catalysed diversification of phosphine ligands by formal substitution at phosphorus. Chem Sci 2022; 13:7914-7919. [PMID: 35865908 PMCID: PMC9258342 DOI: 10.1039/d2sc02496a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
We report a diversification strategy that enables the direct substituent exchange of tertiary phosphines. Alkylated phosphonium salts, prepared by standard alkylation of phosphines, are selectively dearylated in a nickel-catalysed process to access alkylphosphine products via a formal substitution at the phosphorus center. The reaction can be used to introduce a wide range of alkyl substituents into both mono- and bisphosphines. We also show that the alkylation and dearylation steps can be conducted in a one-pot sequence, enabling accelerated access to derivatives of the parent ligand. The phosphine products of the reaction are converted in situ to air-stable borane adducts for isolation, and versatile derivatisation reactions of these adducts are demonstrated. Phosphine substituents can be exchanged by standard alkylation of a phosphine and a subsequent dearylation of the resulting phosphonium salt. A wide variety of alkyl groups can be introduced into both mono- and bidentate ligands using this method.![]()
Collapse
Affiliation(s)
- Sven Roediger
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Sebastian U Leutenegger
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| |
Collapse
|
15
|
Nagahara S, Okada Y, Kitano Y, Chiba K. Biphasic electrochemical peptide synthesis. Chem Sci 2021; 12:12911-12917. [PMID: 34745521 PMCID: PMC8513919 DOI: 10.1039/d1sc03023j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
The large amount of waste derived from coupling reagents is a serious drawback of peptide synthesis from a green chemistry viewpoint. To overcome this issue, we report an electrochemical peptide synthesis in a biphasic system. Anodic oxidation of triphenylphosphine (Ph3P) generates a phosphine radical cation, which serves as the coupling reagent to activate carboxylic acids, and produces triphenylphosphine oxide (Ph3P
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O) as a stoichiometric byproduct. In combination with a soluble tag-assisted liquid-phase peptide synthesis, the selective recovery of desired peptides and Ph3PO was achieved. Given that methods to reduce Ph3PO to Ph3P have been reported, Ph3PO could be a recyclable byproduct unlike byproducts from typical coupling reagents. Moreover, a commercial peptide active pharmaceutical ingredient (API), leuprorelin, was successfully synthesized without the use of traditional coupling reagents. The large amount of waste derived from coupling reagents is a serious drawback of peptide synthesis from a green chemistry viewpoint.![]()
Collapse
Affiliation(s)
- Shingo Nagahara
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology 3-5-8- Saiwai-cho Fuchu Tokyo 183-8509 Japan
| | - Yohei Okada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology 3-5-8- Saiwai-cho Fuchu Tokyo 183-8509 Japan
| | - Yoshikazu Kitano
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology 3-5-8- Saiwai-cho Fuchu Tokyo 183-8509 Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology 3-5-8- Saiwai-cho Fuchu Tokyo 183-8509 Japan
| |
Collapse
|
16
|
Ren JW, Tong MN, Zhao YF, Ni F. Synthesis of Dipeptide, Amide, and Ester without Racemization by Oxalyl Chloride and Catalytic Triphenylphosphine Oxide. Org Lett 2021; 23:7497-7502. [PMID: 34553596 DOI: 10.1021/acs.orglett.1c02614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient triphenylphosphine oxide-catalyzed amidation and esterification for the rapid synthesis of a series of dipeptides, amides, and esters is described. This reaction is applicable to challenging couplings of hindered carboxylic acids with weakly nucleophilic amines or alcohols, giving the products in good yields (67-90%) without racemization. This system employs the highly reactive intermediate Ph3PCl2 as the activator of the carboxylate in a catalytic manner and drives the reaction to completion in a short reaction time (less than 10 min).
Collapse
Affiliation(s)
- Ji-Wei Ren
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Meng-Nan Tong
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yu-Fen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
17
|
Sharma D, Balasubramaniam S, Kumar S, Jemmis ED, Venugopal A. Reversing Lewis acidity from bismuth to antimony. Chem Commun (Camb) 2021; 57:8889-8892. [PMID: 34378571 DOI: 10.1039/d1cc03038h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Investigations on the boundaries between the neutral and cationic models of (Mesityl)2EX (E = Sb, Bi and X = Cl-, OTf-) have facilitated reversing the Lewis acidity from bismuth to antimony. We use this concept to demonstrate a higher efficiency of (Mesityl)2SbOTf over (Mesityl)2BiOTf in the catalytic reduction of phosphine oxides to phosphines. The experiments supported with computations described herein will find use in designing new Lewis acids relevant to catalysis.
Collapse
Affiliation(s)
- Deepti Sharma
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India.
| | - Selvakumar Balasubramaniam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India.
| | - Sandeep Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Eluvathingal D Jemmis
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ajay Venugopal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India.
| |
Collapse
|