Planer S, Frosch J, Koneczny M, Trzybiński D, Woźniak K, Grela K, Tamm M. Heterobimetallic Coinage Metal-Ruthenium Complexes Supported by Anionic N-Heterocyclic Carbenes.
Chemistry 2021;
27:15217-15225. [PMID:
34342923 PMCID:
PMC8597159 DOI:
10.1002/chem.202102553]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 01/10/2023]
Abstract
The lithium complexes [(WCA‐NHC)Li(toluene)] of anionic N‐heterocyclic carbenes with a weakly coordinating borate moiety (WCA‐NHC, WCA=B(C6F5)3, NHC=IDipp=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene) were used for the preparation of silver(I) or copper(I) WCA‐NHC complexes. While the reactions in THF with AgCl or CuCl afforded anionic mono‐ and dicarbene complexes with solvated lithium counterions [Li(THF)n]+ (n=3, 4), the reactions in toluene proceeded with elimination of LiCl and formation of the neutral phosphine and arene complexes [(WCA‐NHC)M(PPh3)] and [(WCA‐NHC)M(η2‐toluene)] (M=Ag, Cu). The latter were used for the preparation of chlorido‐ and iodido‐bridged heterobimetallic Ag/Ru and Cu/Ru complexes [(WCA‐NHC)M(μ‐X)2Ru(PPh3)(η6‐p‐cymene)] (M=Ag, Cu, X=Cl; M=Ag, X=I). Surprisingly, these complexes resisted the elimination of CuCl, AgCl, or AgI, precluding WCA‐NHC transmetalation.
Collapse