1
|
Jaouadi K, Abdellaoui M, Levernier E, Payard PA, Derat E, Le Saux T, Ollivier C, Torelli S, Jullien L, Plasson R, Fensterbank L, Grimaud L. Regime Switch in the Dual-Catalyzed Coupling of Alkyl Silicates with Aryl Bromides. Chemistry 2023; 29:e202301780. [PMID: 37494564 DOI: 10.1002/chem.202301780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
Metallaphotoredox catalyzed cross-coupling of an arylbromide (Ar-Br) with an alkyl bis(catecholato)silicate (R-Si⊖ ) has been analyzed in depth using a continuum of analytical techniques (EPR, fluorine NMR, electrochemistry, photophysics) and modeling (micro-kinetics and DFT calculations). These studies converged on the impact of four control parameters consisting in the initial concentrations of the iridium photocatalyst ([Ir]0 ), nickel precatalyst ([Ni]0 ) and silicate ([R-Si⊖ ]0 ) as well as light intensity I0 for an efficient reaction between Ar-Br and R-Si⊖ . More precisely, two regimes were found to be possibly at play. The first one relies on an equimolar consumption of Ar-Br with R-Si⊖ smoothly leading to Ar-R, with no side-product from R-Si⊖ and a second one in which R-Si⊖ is simultaneously coupled to Ar-Br and degraded to R-H. This integrative approach could serve as a case study for the investigation of other metallaphotoredox catalysis manifolds of synthetic significance.
Collapse
Affiliation(s)
- Khaoula Jaouadi
- LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Mehdi Abdellaoui
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 75005, Paris, France
| | - Etienne Levernier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 75005, Paris, France
| | - Pierre-Adrien Payard
- LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Etienne Derat
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 75005, Paris, France
| | - Thomas Le Saux
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Cyril Ollivier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 75005, Paris, France
| | - Stéphane Torelli
- Univ. Grenoble Alpes, CNRS, CEA, IRIG Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38054, Grenoble Cedex, France
| | - Ludovic Jullien
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Raphaël Plasson
- UMR408 SQPOV Avignon Université/INRAE Campus Jean-Henri Fabre, 301 rue Baruch de Spinoza BP, 21239, 84916, Avignon Cedex 9, France
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 75005, Paris, France
| | - Laurence Grimaud
- LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|
2
|
Bavi M, Nabavizadeh SM, Hosseini FN, Hoseini SJ, Friedel JN, Klein A. Cross-Coupling versus Homo-Coupling at a Pt(IV) Center: Computational and Experimental Approaches. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Marzieh Bavi
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - S. Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | | | - S. Jafar Hoseini
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Joshua Nicolas Friedel
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Köln, Germany
| | - Axel Klein
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Köln, Germany
| |
Collapse
|
3
|
Canty AJ, Ariafard A, van Koten G. Computational Study of Bridge Splitting, Aryl Halide Oxidative Addition to Pt II , and Reductive Elimination from Pt IV : Route to Pincer-Pt II Reagents with Chemical and Biological Applications. Chemistry 2021; 27:15426-15433. [PMID: 34473849 DOI: 10.1002/chem.202102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/06/2022]
Abstract
Density functional theory computation indicates that bridge splitting of [PtII R2 (μ-SEt2 )]2 proceeds by partial dissociation to form R2 Pta (μ-SEt2 )Ptb R2 (SEt2 ), followed by coordination of N-donor bromoarenes (L-Br) at Pta leading to release of Ptb R2 (SEt2 ), which reacts with a second molecule of L-Br, providing two molecules of PtR2 (SEt2 )(L-Br-N). For R=4-tolyl (Tol), L-Br=2,6-(pzCH2 )2 C6 H3 Br (pz=pyrazol-1-yl) and 2,6-(Me2 NCH2 )2 C6 H3 Br, subsequent oxidative addition assisted by intramolecular N-donor coordination via PtII Tol2 (L-N,Br) and reductive elimination from PtIV intermediates gives mer-PtII (L-N,C,N)Br and Tol2 . The strong σ-donor influence of Tol groups results in subtle differences in oxidative addition mechanisms when compared with related aryl halide oxidative addition to palladium(II) centres. For R=Me and L-Br=2,6-(pzCH2 )2 C6 H3 Br, a stable PtIV product, fac-PtIV Me2 {2,6-(pzCH2 )2 C6 H3 -N,C,N)Br is predicted, as reported experimentally, acting as a model for undetected and unstable PtIV Tol2 {L-N,C,N}Br undergoing facile Tol2 reductive elimination. The mechanisms reported herein enable the synthesis of PtII pincer reagents with applications in materials and bio-organometallic chemistry.
Collapse
Affiliation(s)
- Allan J Canty
- School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia
| | - Alireza Ariafard
- School of Natural Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia
| | - Gerard van Koten
- Organic Chemistry and Catalysis, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| |
Collapse
|
4
|
Nabavizadeh SM, Molaee H, Haddadi E, Niroomand Hosseini F, Hoseini SJ, Abu-Omar MM. Tetranuclear rollover cyclometalated organoplatinum-rhenium compounds; C-I oxidative addition and C-C reductive elimination using a rollover cycloplatinated dimer. Dalton Trans 2021; 50:15015-15026. [PMID: 34609403 DOI: 10.1039/d1dt02086b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel tetranuclear Pt(IV)-Re(VII) complex [Pt2Me4(OReO3)2(PMePh2)2(µ-bpy-2H)], 4, is synthesized through the reaction of silver perrhenate with a new rollover cycloplatinated(IV) complex [Pt2Me4I2(PMePh2)2(µ-bpy-2H)], 3. In complex 4, while 2,2'-bipyridine (bpy) acts as a linker between two Pt metal centers, oxygen acts as a mono-bridging atom between Pt and Re centers through an unsupported Pt(IV)-O-Re(VII) bridge. The precursor rollover cycloplatinated(IV) complex 3 is prepared by the MeI oxidative addition reaction of the rollover cycloplatinated(II) complex [Pt2Me2(PMePh2)2(µ-bpy-2H)], 2. Complex 2 shows a metal-to-ligand charge-transfer band in the visible region, which was used to investigate the kinetics and mechanism of its double MeI oxidative addition reaction. Based on the experimental findings, the classical SN2 mechanism was suggested for both steps and supported by computational studies. All complexes are fully characterized using multinuclear NMR spectroscopy and elemental analysis. Attempts to grow crystals of the rollover cycloplatinated(IV) dimer 3 yielded a new dimer rollover cyclometalated complex [Pt2I2(PMePh2)2(µ-bpy-2H)], 5, presumably from the C-C reductive elimination of ethane. The identity of complex 5 was confirmed by single crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- S Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran.
| | - Hajar Molaee
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran.
| | - Elahe Haddadi
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran.
| | | | - S Jafar Hoseini
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran.
| | - Mahdi M Abu-Omar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|