1
|
Watson BT, Dias HVR. Going for gold - the chemistry of structurally authenticated gold(I)-ethylene complexes. Chem Commun (Camb) 2024; 60:4872-4889. [PMID: 38567496 DOI: 10.1039/d4cc00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Gold coordination chemistry and catalysis involving unsaturated hydrocarbons such as olefins have experienced a remarkable growth during the last few decades. Despite the importance, isolable and well-characterized molecules with ethylene, the simplest and the most widely produced olefin, on gold are still limited. This review aims to cover features of, and strategies utilized to stabilize, gold-ethylene complexes and their diverse use in chemical transformations and homogeneous catalytic processes. Isolable and well-authenticated gold-ethylene complexes are important not only for structural, spectroscopic, and bonding studies but also as models for likely intermediates in gold mediated reactions of alkenes and gold-alkene species observed in the gas phase. There has also been development on AuI/III catalytic cycles. Nitrogen based ligands have been the most widely utilized ligand supports thus far for the successful stabilization of gold-ethylene adducts. Gold has a bright future in olefin chemistry and with ethylene.
Collapse
Affiliation(s)
- Brandon T Watson
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
2
|
McQuade J, Jäkle F. Tris(pyridyl)borates: an emergent class of versatile and robust polydentate ligands for catalysis and materials applications. Dalton Trans 2023; 52:10278-10285. [PMID: 37462446 DOI: 10.1039/d3dt01665j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Tridentate ligands that incorporate pyridyl rather than pyrazolyl groups are emerging as an attractive class of "scorpionate"-type ligands with enhanced electron donation, increased stability, and divergent geometry at the metal centre relative to tris(pyrazolyl)borates originally introduced by Trofimenko. Following our initial reports, the tris(pyridyl)borate (Tpyb) ligand architecture has been adopted by several research groups in pursuit of functional metal complexes that offer new opportunities in catalysis and materials science. While earlier work had been focused on symmetric octahedral complexes, ML2, which are advantageous as highly robust building blocks in materials sciences, recently introduced new ligand designs provide access to heteroleptic metal complexes with vacant sites that lend themselves to applications in catalysis. Signficant progress has also been made in the post-complexation functionalization of these ligands via electrophilic and nucleophilic substitution reactions at the boron centres, opening up new routes for integration of Tpyb complexes with diverse functional materials while also raising interesting mechanistic questions.
Collapse
Affiliation(s)
- James McQuade
- Department of Chemistry, Rutgers University Newark, 73 Warren Street, Newark, New Jersey 07102, USA.
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University Newark, 73 Warren Street, Newark, New Jersey 07102, USA.
| |
Collapse
|
3
|
Watson BT, Vanga M, Noonikara-Poyil A, Muñoz-Castro A, Dias HVR. Copper(I), Silver(I), and Gold(I) Ethylene Complexes of Fluorinated and Boron-Methylated Bis- and Tris(pyridyl)borate Chelators. Inorg Chem 2023; 62:1636-1648. [PMID: 36657123 DOI: 10.1021/acs.inorgchem.2c04009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Bis- and tris-pyridyl borate ligands containing pyridyl donor arms, a methylated boron cap, and a fluorine-lined coordination pocket have been prepared and utilized in coinage metal chemistry. The tris(pyridyl)borate ligand has been synthesized using a convenient boron source, [NBu4][MeBF3]. These N-based ligands permitted the isolation of group 11 metal-ethylene complexes [MeB(6-(CF3)Py)3]M(C2H4) and [Me2B(6-(CF3)Py)2]M(C2H4) (M = Cu, Ag, Au). The gold complexes display the largest coordination-induced upfield shifts of the ethylene 13C resonance relative to that of the free ethylene in their NMR spectra, while the silver complexes show the smallest shift. Solid-state structures of five of these metal-ethylene complexes as well as the related free ligands were established by X-ray crystallography. Surprisingly, all three [MeB(6-(CF3)Py)3]M(C2H4) adopt the rare κ2 coordination mode rather than the typical κ3 coordination mode of facial capping tridentate ligands. Computational analyses indicate that κ2 coordination mode is favored over the κ3-mode in these coinage metal-ethylene complexes and point to the effects CF3-substituents have on κ2/κ3-energy difference. The M-C and M-N bond distances of [MeB(6-(CF3)Py)3]M(C2H4) follow the trend expected based on covalent radii of M(I) ions. The calculated ethylene-M interaction energy of κ2-[MeB(6-(CF3)Py)3]M(C2H4) indicated that the gold(I) forms the strongest interaction with ethylene. A comparison to the related poly(pyrazolyl)borates is also presented.
Collapse
Affiliation(s)
- Brandon T Watson
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Mukundam Vanga
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Anurag Noonikara-Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
4
|
Qian J, Comito RJ. Ethylene Polymerization with Thermally Robust Vanadium(III) Tris(2-pyridyl)borate Complexes. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jin Qian
- University of Houston, Department of Chemistry, 3585 Cullen Boulevard, Houston, Texas 77204-5003, United States
| | - Robert J. Comito
- University of Houston, Department of Chemistry, 3585 Cullen Boulevard, Houston, Texas 77204-5003, United States
| |
Collapse
|
5
|
Late Transition Metal Catalysts with Chelating Amines for Olefin Polymerization. Catalysts 2022. [DOI: 10.3390/catal12090936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polyolefins are the most consumed polymeric materials extensively used in our daily life and are usually generated by coordination polymerization in the polyolefin industry. Olefin polymerization catalysts containing transition metal–organic compound combinations are undoubtedly crucial for the development of the polyolefin industry. The nitrogen donor atom has attracted considerable interest and is widely used in combination with the transition metal for the fine-tuning of the chemical environment around the metal center. In addition to widely reported olefin polymerization catalysts with imine and amide donors (sp2 hybrid N), late transition metal catalysts with chelating amine donors (sp3 hybrid N) for olefin polymerization have never been reviewed. In this review paper, we focus on late transition metal (Ni, Pd, Fe, and Co) catalysts with chelating amines for olefin polymerization. A variety of late transition metal catalysts bearing different neutral amine donors are surveyed for olefin polymerization, including amine–imine, amine–pyridine, α-diamine, and [N, N, N] tridentate ligands with amine donors. The relationship between catalyst structure and catalytic performance is also encompassed. This review aims to promote the design of late transition metal catalysts with unique chelating amine donors for the development of high-performance polyolefin materials.
Collapse
|
6
|
Qian J, Comito RJ. Site-Isolated Main-Group Tris(2-pyridyl)borate Complexes by Pyridine Substitution and Their Ring-Opening Polymerization Catalysis. Inorg Chem 2022; 61:10852-10862. [PMID: 35776081 DOI: 10.1021/acs.inorgchem.2c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tris(2-pyridyl)borates are an emerging class of scorpionate ligands, distinguished as exceptionally robust and electron-donating. However, the rapid formation of inert homoleptic complexes with divalent metals has so far limited their catalytic utility. We report site-isolating tris(2-pyridyl)borate ligands, bearing isopropyl, tert-butyl, and mesityl substituents at the pyridine 6-position to suppress the formation of inert homoleptic complexes. These ligands form the first 1:1 complexes between tris(2-pyridyl)borates and Mg2+, Zn2+, or Ca2+, with isopropyl-substituted TpyiPrH showing the most generality. Single-crystal X-ray diffraction analysis of the resulting complexes and comparison to density functional theory (DFT) models showed geometric distortions driven by steric repulsion between the pyridine 6-substituents and the hexamethyldisilazide (HMDS-, -N(SiMe3)2) anion. We show that this steric profile is a feature of the six-membered pyridine ring and contrasts with more established tris(pyrazolyl)borate and tris(imidazoline)borate scorpionate complexes. TpyiPrMg(HMDS) (1) and its zinc analogue are moderately active for the controlled polymerization of l-lactide, ε-caprolactone, and trimethylene carbonate. Furthermore, 1 gives controlled polymerization under more demanding melt-phase polymerization conditions at 100 °C, and block copolymerization of ε-caprolactone and trimethylene carbonate. These results will enable useful catalysis and coordination chemistry studies with tris(2-pyridyl)borates, and characterizes their structural complementarity to more familiar scorpionate ligands.
Collapse
Affiliation(s)
- Jin Qian
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Robert J Comito
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
7
|
Vanga M, Noonikara-Poyil A, Wu J, Dias HVR. Carbonyl and Isocyanide Complexes of Copper and Silver Supported by Fluorinated Poly(pyridyl)borates. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Anurag Noonikara-Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Jiang Wu
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
8
|
Vanga M, Muñoz-Castro A, Dias HVR. Fluorinated tris(pyridyl)borate ligand support on coinage metals. Dalton Trans 2022; 51:1308-1312. [PMID: 35015008 DOI: 10.1039/d1dt04136c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A useful ligand involving three pyridyl donor arms and fluorocarbon substituents surrounding the coordination pocket has been assembled and utilized in coinage metal chemistry. This tris(pyridyl)borate serves as an excellent ligand support for the stabilization of ethylene complexes of copper, silver and gold.
Collapse
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - Alvaro Muñoz-Castro
- Grupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
9
|
Goura J, McQuade J, Shimoyama D, Lalancette RA, Sheridan JB, Jäkle F. Electrophilic and nucleophilic displacement reactions at the bridgehead borons of tris(pyridyl)borate scorpionate complexes. Chem Commun (Camb) 2022; 58:977-980. [PMID: 34979540 DOI: 10.1039/d1cc06181j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although a wide variety of boron-based "scorpionate" ligands have been implemented, a modular route that offers facile access to different substitution patterns at boron has yet to be developed. Here, we demonstrate new reactivity patterns at the bridgehead positions of a ruthenium tris(pyrid-2-yl)borate complex that allow for facile tuning of steric and electronic properties.
Collapse
Affiliation(s)
- Joydeb Goura
- Department of Chemistry, Rutgers University-Newark, Newark, NJ 07102, USA.
| | - James McQuade
- Department of Chemistry, Rutgers University-Newark, Newark, NJ 07102, USA.
| | - Daisuke Shimoyama
- Department of Chemistry, Rutgers University-Newark, Newark, NJ 07102, USA.
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, Newark, NJ 07102, USA.
| | - John B Sheridan
- Department of Chemistry, Rutgers University-Newark, Newark, NJ 07102, USA.
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, Newark, NJ 07102, USA.
| |
Collapse
|
10
|
Fujiwara Y, Takayama T, Nakazawa J, Okamura M, Hikichi S. Development of a novel scorpionate ligand with 6-methylpyridine and comparison of structural and electronic properties of nickel(II) complexes with related tris(azolyl)borates. Dalton Trans 2022; 51:10338-10342. [DOI: 10.1039/d2dt01548j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel anionic tridentate borate ligand with 6-methlpyridyl donor, TpyMe, has been synthesized. Comparison of molecular structures and reactivities of nickel(II)-bromido complexes with tris(azolyl)borate ligands composed of pyridyl, pyrazolyl, or...
Collapse
|
11
|
Wu R, Niu Z, Huang L, Yang Y, Xia Z, Fan W, Dai Q, Cui L, He J, Bai C. Thermally stable vanadium complexes supported by the iminophenyl oxazolinylphenylamine ligands: synthesis, characterization and application for ethylene (co-)polymerization. Dalton Trans 2021; 50:16067-16075. [PMID: 34633403 DOI: 10.1039/d1dt03004c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this work, a series of oxovanadium complexes bearing the ligands (S,E)-(+)-2, 6-dialkyl-N-(2-((2-(4-isopropyl-4,5-dihydrooxazole-2-yl)phenyl)amino)benzylidene)aniline (dialkyl = dimethyl (V1), diethyl (V2), and isopropyl (V3)) have been synthesized and characterized by FTIR spectroscopy and elemental analysis. Moreover, the molecular structures of complexes V2 and V3 were defined by X-ray diffraction. On activation with ethylaluminium sesquichloride (Al2Et3Cl3), these complexes exhibited high activity towards ethylene polymerization (up to 1.39 × 107 g molv-1 h-1) and showed excellent thermal stability (up to 60 °C). The obtained polyethylene had a moderate molecular weight (21.9 × 104 to 66.4 × 104 g mol-1) and exhibited narrow distribution (1.91 to 2.86) and unimodal features. The effect of the substituents on the ligands was also investigated in detail. The compound bearing the diisopropyl group showed the highest activity toward ethylene polymerization as the bimolecular deactivation of the catalyst can be effectively inhibited by the steric hindrance of the ortho-substituent on aniline. The complex V2 with moderate steric hindrance was also evaluated as a catalyst for the copolymerization of ethylene with norbornene and showed moderate to high activity.
Collapse
Affiliation(s)
- Ruiyao Wu
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Zhen Niu
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Lingyun Huang
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Yinxin Yang
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Zhu Xia
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Weifeng Fan
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Quanquan Dai
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Long Cui
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Jianyun He
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Chenxi Bai
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, 230026, Hefei, Anhui, China
| |
Collapse
|