1
|
Pecak J, Talmazan RA, Svatunek D, Kirchner K, Podewitz M. Is Mn(I) More Promising Than Fe(II)-A Comparison of Mn vs Fe Complexes for Olefin Metathesis. Organometallics 2024; 43:457-466. [PMID: 38425381 PMCID: PMC10900517 DOI: 10.1021/acs.organomet.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 03/02/2024]
Abstract
Olefin metathesis is one of the most significant transformations in organic chemistry and is an excellent example for efficient homogeneous catalysis. Although most currently used catalysts are primarily based on 4d and 5d metals, cycloaddition and cycloreversion reactions can also be attributed to first-row transition metals, such as Fe. Surprisingly, the potential of Mn(I)-based catalysts for olefin metathesis has been unexplored despite their prominence in homogeneous catalysis and their diagonal relationship to Ru(II). In the present study, we have investigated the prospective capabilities of Mn complexes for cycloaddition and reversion reactions using density functional theory. Therefore, we have initially compared the literature known iron model systems and their isoelectronic Mn counterparts regarding their reactivity and electronic structure. Next, we constructed potential Mn complexes derived from synthetically accessible species, including carbonyl ligands and obeying octahedral geometry. Based on thermodynamic parameters and the calculation of electronic descriptors, we were able to validate the isodiagonal relationship. Our study serves as guidance for the experimental chemist.
Collapse
Affiliation(s)
- Jan Pecak
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Radu A. Talmazan
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Dennis Svatunek
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Karl Kirchner
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Maren Podewitz
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| |
Collapse
|
2
|
Yolsal U, Shaw PJ, Lowy PA, Chambenahalli R, Garden JA. Exploiting Multimetallic Cooperativity in the Ring-Opening Polymerization of Cyclic Esters and Ethers. ACS Catal 2024; 14:1050-1074. [PMID: 38269042 PMCID: PMC10804381 DOI: 10.1021/acscatal.3c05103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024]
Abstract
The use of multimetallic complexes is a rapidly advancing route to enhance catalyst performance in the ring-opening polymerization of cyclic esters and ethers. Multimetallic catalysts often outperform their monometallic analogues in terms of reactivity and/or polymerization control, and these improvements are typically attributed to "multimetallic cooperativity". Yet the origins of multimetallic cooperativity often remain unclear. This review explores the key factors underpinning multimetallic cooperativity, including metal-metal distances, the flexibility, electronics and conformation of the ligand framework, and the coordination environment of the metal centers. Emerging trends are discussed to provide insights into why cooperativity occurs and how to harness cooperativity for the development of highly efficient multimetallic catalysts.
Collapse
Affiliation(s)
- Utku Yolsal
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Peter J. Shaw
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Phoebe A. Lowy
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Raju Chambenahalli
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Jennifer A. Garden
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|
3
|
Donthireddy SNR, Rit A. Heteroditopic NHC Ligand Supported Manganese(I) Complexes: Synthesis, Characterization, and Activity as Non-bifunctional Phosphine-Free Catalyst for the α-Alkylation of Nitriles. Chemistry 2024; 30:e202302504. [PMID: 37807667 DOI: 10.1002/chem.202302504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
In the present work, several manganese(I) complexes of chelating heteroditopic ligands Mn1-3, featuring ImNHC (imidazol-2-ylidene) connected to a 1,2,3-triazole-N or tzNHC (1,2,3-triazol-5-ylidene) donors via a methylene spacer, with possible modifications at the triazole backbone have been synthesized and completely characterized. Notably, the CO stretching frequencies, electrochemical analysis, and frontier orbital analysis certainly suggest that the chelating ImNHC-tzNHC ligands have stronger donation capabilities than the related ImNHC-Ntz ligand in the synthesized complexes. Moreover, these well-defined phosphine-free Mn(I)-NHC complexes have been found to be effective non-bifunctional catalysts for the α-alkylation of nitriles using alcohols and importantly, the catalyst Mn1 containing ImNHC connected to a weaker triazole-N donor displayed higher activity compared to Mn2/Mn3 containing an unsymmetrical bis-carbene donors (ImNHC and tzNHC). A wide range of aryl nitriles were coupled with diverse (hetero)aromatic as well as aliphatic alcohols to get the corresponding products in good to excellent yields (32 examples, up to 95 % yield). The detailed mechanistic studies including deuterium labelling experiments reveal that the reaction follows a Borrowing Hydrogen pathway.
Collapse
Affiliation(s)
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
4
|
Thenarukandiyil R, Kamte R, Garhwal S, Effnert P, Fridman N, de Ruiter G. α-Methylation of Ketones and Indoles Catalyzed by a Manganese(I) PC NHCP Pincer Complex with Methanol as a C 1 Source. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ranjeesh Thenarukandiyil
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Rohit Kamte
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Subhash Garhwal
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Philipp Effnert
- Department of Organic Chemistry, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, Münster 48149, Germany
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200008, Israel
| |
Collapse
|
5
|
Antico E, Leutzsch M, Wessel N, Weyhermüller T, Werlé C, Leitner W. Selective oxidation of silanes into silanols with water using [MnBr(CO) 5] as a precatalyst. Chem Sci 2022; 14:54-60. [PMID: 36605749 PMCID: PMC9769106 DOI: 10.1039/d2sc05959b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
The development of earth-abundant catalysts for the selective conversion of silanes to silanols with water as an oxidant generating valuable hydrogen as the only by-product continues to be a challenge. Here, we demonstrate that [MnBr(CO)5] is a highly active precatalyst for this reaction, operating under neutral conditions and avoiding the undesired formation of siloxanes. As a result, a broad substrate scope, including primary and secondary silanes, could be converted to the desired products. The turnover performances of the catalyst were also examined, yielding a maximum TOF of 4088 h-1. New light was shed on the debated mechanism of the interaction between [MnBr(CO)5] and Si-H bonds based on the reaction kinetics (including KIEs of PhMe2SiD and D2O) and spectroscopic techniques (FT-IR, GC-TCD, 1H-, 29Si-, and 13C-NMR). The initial activation of [MnBr(CO)5] was found to result from the formation of a manganese(i) hydride species and R3SiBr, and the experimental data are most consistent with a catalytic cycle comprising a cationic tricarbonyl Mn(i) unit as the active framework.
Collapse
Affiliation(s)
- Emanuele Antico
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470 Mülheim an der RuhrGermany,Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen UniversityWorringer Weg 252074 AachenGermany
| | - Markus Leutzsch
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470 Mülheim an der RuhrGermany
| | - Niklas Wessel
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470 Mülheim an der RuhrGermany,Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen UniversityWorringer Weg 252074 AachenGermany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470 Mülheim an der RuhrGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470 Mülheim an der RuhrGermany,Ruhr University BochumUniversitätsstr. 15044801 BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470 Mülheim an der RuhrGermany,Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen UniversityWorringer Weg 252074 AachenGermany
| |
Collapse
|
6
|
Belli RG, Tafuri VC, Roberts CC. Improving Alkyl–Alkyl Cross-Coupling Catalysis with Early Transition Metals through Mechanistic Understanding and Metal Tuning. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Roman G. Belli
- University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | |
Collapse
|
7
|
Joshi K, Ramabhadran RO. Studying the impact of diagonal-doping on thermal stability of main-group metal clusters via Born Oppenheimer molecular dynamics. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2088420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Krati Joshi
- Department of Chemistry, Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh, India
| | - Raghunath O. Ramabhadran
- Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), Tirupati, Andhra Pradesh, India
| |
Collapse
|
8
|
Sousa-Silva A, Paredes-Gil K, de Matos JME, Sá É. Singlet Spin State Drives [V]-Carbene To Catalyze Olefin Metathesis: A Computational Analysis. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adenilson Sousa-Silva
- Departamento de Química, Universidade Federal do Piauí, Teresina, PI 64049-505, Brazil
- Laboratório de Química Teórica, Universidade Federal do Piauí, Teresina, PI 64049-505, Brazil
| | - Katherine Paredes-Gil
- Departamento de Química, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago 8940577, Chile
| | | | - Égil Sá
- Laboratório de Química Teórica, Universidade Federal do Piauí, Teresina, PI 64049-505, Brazil
- Universidade Federal do Delta do Parnaíba, Parnaíba, PI 64202-020, Brazil
| |
Collapse
|
9
|
Tejeda G, Belov DS, Fenoll DA, Rue KL, Tsay C, Solans-Monfort X, Bukhryakov KV. Vanadium Imido NHC Complexes for Ring-Closing Olefin Metathesis Reactions. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gabriela Tejeda
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Dmitry S. Belov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Didac A. Fenoll
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Kelly L. Rue
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Charlene Tsay
- Department of Chemistry, University of California, Riverside, California 92591, United States
| | | | - Konstantin V. Bukhryakov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|