1
|
Ye YS, Laverny A, Wodrich MD, Laplaza R, Fadaei-Tirani F, Scopelliti R, Corminboeuf C, Cramer N. Enantiospecific Synthesis of Planar Chiral Rhodium and Iridium Cyclopentadienyl Complexes: Enabling Streamlined and Computer-Guided Access to Highly Selective Catalysts for Asymmetric C-H Functionalizations. J Am Chem Soc 2024; 146:34786-34795. [PMID: 39642345 DOI: 10.1021/jacs.4c13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Chiral cyclopentadienyl (CpX) metal complexes are frequently used in asymmetric catalysis by virtue of their high reactivity and selectivity. Planar-chiral-only rhodium and iridium cyclopentadienyl complexes are particularly promising due to unrestricted chemical space for CpX ligand design while retaining structural simplicity. However, they are currently still niche because of a lack of efficient synthetic strategies that avoid lengthy chiral auxiliary routes or chiral preparatory HPLC resolution of the complexes. To streamline access to such planar-chiral-only CpX-metal complexes, we designed a straightforward, highly enantiospecific, point-to-planar chirality transfer complexation via facially selective concerted-metalation-deprotonation between metal-carboxylate precursor [M(olefin)2OAc]2 and a chiral cyclopentadiene. This entirely avoids the typical stereoablative complexation of an achiral cyclopentadienyl anion that detrimentally yields a racemate. Exploiting the described enantiospecific complexation protocol and a simple divergent synthetic route to suitable chiral cyclopentadienes, we generated a structurally diverse library of new planar chiral Cp-Rh(I), Cp-Ir(I), Cp-Rh(III), and Cp-Ir(III) complexes. Moreover, the enantiospecific complexation step can be concatenated with a preceding Au-catalyzed cyclization in an efficient one-pot process that likely involves an elaborate point-to-axial-to-point-to-planar chirality transfer. Guided by computational selectivity predictions, the structure of a CpX-Rh complex in our library was tuned to optimize reactivity and selectivity in the asymmetric C-H functionalization of a benzamide with various challenging alkenes. With an optimized CpX-Rh complex in hand, we showcased its excellent catalytic performance and high selectivity for refractory alkene substrates that reacted in poor selectivity with previous CpX-Rh catalysts.
Collapse
Affiliation(s)
- Young Sebastian Ye
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Aragorn Laverny
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Matthew D Wodrich
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ruben Laplaza
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Farzaneh Fadaei-Tirani
- X-Ray Diffraction and Surface Analytics Facility, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Rosario Scopelliti
- X-Ray Diffraction and Surface Analytics Facility, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Clemence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
2
|
Matsubara Y, Ishitani O. Photochemical formation of hydride using transition metal complexes and its application to photocatalytic reduction of the coenzyme NAD(P)+ and its model compounds. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Fanara PM, Vigneswaran V, Gunasekera PS, MacMillan SN, Lacy DC. Reversible Photoisomerization in a Ru cis-Dihydride Catalyst Accessed through Atypical Metal–Ligand Cooperative H2 Activation: Photoenhanced Acceptorless Alcohol Dehydrogenation. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paul M. Fanara
- Department of Chemistry, University at Buffalo, State University of New York; Buffalo, New York14260, United States
| | - Vipulan Vigneswaran
- Department of Chemistry, University at Buffalo, State University of New York; Buffalo, New York14260, United States
| | - Parami S. Gunasekera
- Department of Chemistry, University at Buffalo, State University of New York; Buffalo, New York14260, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University; Ithaca, New York14853, United States
| | - David C. Lacy
- Department of Chemistry, University at Buffalo, State University of New York; Buffalo, New York14260, United States
| |
Collapse
|
4
|
Cook A, MacLean H, St. Onge P, Newman SG. Nickel-Catalyzed Reductive Deoxygenation of Diverse C–O Bond-Bearing Functional Groups. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Haydn MacLean
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Piers St. Onge
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|