1
|
Kushvaha SK, Roesky HW. Amidinato silylene-based inorganic aromatic rings. Dalton Trans 2024; 53:19058-19074. [PMID: 39565335 DOI: 10.1039/d4dt02790f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Aromaticity is a key concept that underpins the behavior and applications of a wide range of chemical compounds. Its impact on stability, reactivity, biological functions, material properties, and environmental persistence underscores the importance of understanding and harnessing aromaticity in chemistry and materials sciences. We have been pioneers in the field of silylene chemistry and recently, our silylene molecules have been used to synthesize several inorganic aromatic ring compounds. Aromaticity in inorganic compounds is not commonly observed; hence, inorganic aromatic rings derived from silylene would further enhance our understanding of aromaticity and stability. Herein, we discuss the inorganic aromatic rings which have been synthesized from amidinato silylene.
Collapse
Affiliation(s)
- Saroj Kumar Kushvaha
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| |
Collapse
|
2
|
Ghosh M, Chatterjee J, Panwaria P, Kudlu A, Tothadi S, Khan S. Silylene-Copper-Amide Emitters: From Thermally Activated Delayed Fluorescence to Dual Emission. Angew Chem Int Ed Engl 2024; 63:e202410792. [PMID: 39148269 DOI: 10.1002/anie.202410792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Herein, we report the inaugural instance of N-heterocyclic silylene (NHSi)-coordinated copper amide emitters (2-5). These complexes exhibit thermally activated delayed fluorescence (TADF) and singlet-triplet dual emission in anaerobic conditions. The NHSi-Cu-diphenylamide (2) complex demonstrates TADF with a very small ΔEST gap (0.01 eV), an absolute quantum yield of 11 %, a radiative rate of 2.55×105 s-1, and a short τTADF of 0.45 μs in the solid state. The dual emissive complexes (3-5) achieve an absolute quantum yield of up to 20 % in the solid state with a kISC rate of 1.82×108 s-1 and exhibit room temperature phosphorescence (RTP) with lifetimes up to 9 ms. The gradual decrease in the intensity of the triplet state of complex 3 under controlled oxygen exposure demonstrates its potential for future oxygen-sensing applications. Complexes 2 and 3 have been further utilized to fabricate converted LEDs, paving the way for future OLED production using newly synthesized NHSi-Cu-amides.
Collapse
Affiliation(s)
- Moushakhi Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Joy Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Ashwath Kudlu
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Srinu Tothadi
- Analytical and Environmental Sciences Division and Centralized Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, 364002, India
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
3
|
Müller MP, Hinz A. Silylenes with a Small Chalcogenide Substituent: Tuning Frontier Orbital Energies from O to Te. Angew Chem Int Ed Engl 2024; 63:e202405319. [PMID: 38656624 DOI: 10.1002/anie.202405319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
The general synthesis of heteroleptic acyclic silylenes with a bulky carbazolyl substituent (dtbpCbz) is detailed and a series of compounds with a chalcogenide substituent of the type [(dtbpCbz)SiE16R] (E16R=OtBu, SEt, SePh, TePh) is reported. With the bulky carbazolyl substituent present, the chalcogenide moiety can be very small, as is shown by incorporating groups as small as ethyl, phenyl or tert-butyl. For the first time, the electronic properties of the silylene can be tuned along a complete series of chalcogenide substituents. The effects are clearly visible in the NMR and UV/Vis spectra, and were rationalised by DFT computations. The reactivity of the heaviest chalcogenide-substituted silylenes was probed by reactions with trimethylphosphine selenide and the terphenyl azide TerN3 (Ter=2,6-dimesitylphenyl).
Collapse
Affiliation(s)
- Maximilian P Müller
- Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry (AOC), Engesserstr. 15, 76131, Karlsruhe
| | - Alexander Hinz
- Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry (AOC), Engesserstr. 15, 76131, Karlsruhe
| |
Collapse
|
4
|
Ghosh M, Parvin N, Panwaria P, Tothadi S, Bakthavatsalam R, Therambram A, Khan S. Diverse structural reactivity patterns of a POCOP ligand with coinage metals. Dalton Trans 2024; 53:7763-7774. [PMID: 38619861 DOI: 10.1039/d3dt03921h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
We have utilised the 4,6-di-tert-butyl resorcinol bis(diphenylphosphinite) (POCOP) ligand for exploring its coordination ability towards group 11 metal centres. The treatment of the bidentate ligand 1 with various coinage metal precursors afforded a wide range of structurally diverse complexes 2-12, depending upon the metal precursors used. This furnishes several multinuclear Cu(I) complexes with dimeric (2) and tetrameric cores (3, 4, and 5). The tetrameric stairstep complex 4 shows thermochromic behaviour, whereas the dimeric complex 2 and tetrameric complex 3 show luminescence properties at cryogenic temperatures. Interestingly, the halide substitution reaction of the dimeric complex 2 with KPPh2 produces a unique mixed phosphine-based tetrameric Cu(I) complex, 5. Treatment of the POCOP ligand with [CuBF4(CH3CN)4] in the presence of 2,2'-bipyridine afforded heteroleptic complex 6, consisting of tri- and tetra-coordinated cationic Cu(I) centres. Furthermore, we could also isolate cubane (8) and stairstep (9) complexes of Ag(I). The cationic Au(I) complex (12) was obtained from the dinuclear Au(I) complex of POCOP, 11. Complex 12 revealed the presence of a strong intramolecular aurophilic interaction with an Au⋯Au bond distance of 3.1143(9) Å. Subsequently, the photophysical properties of these complexes have been studied. All the complexes were characterised by single-crystal X-ray diffraction studies, routine NMR techniques, and mass spectroscopy.
Collapse
Affiliation(s)
- Moushakhi Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Nasrina Parvin
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Srinu Tothadi
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijub Badheka Marg, Bhavnagar 364002, India
| | - Rangarajan Bakthavatsalam
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Srinivasapuram-Jangalapalli Village, Tirupati 517619, India
| | - Arshad Therambram
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| |
Collapse
|
5
|
Abe S, Inagawa Y, Kobayashi R, Ishida S, Iwamoto T. Silyl(silylene) Coinage Metal Complexes Obtained from Isolable Cyclic Alkylsilylenes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Shunya Abe
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Yuichiro Inagawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Ryo Kobayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|