1
|
Ning Z, Ma Y, Zeng Y, Wang Y, Xi A, Sun WH. Synthesis of low-molecular weight and branched polyethylenes via ethylene polymerization using 9-(arylimino)-5,6,7,8-tetrahydrocyclohepta-pyridylnickel precatalysts. Dalton Trans 2024; 53:15968-15983. [PMID: 39279343 DOI: 10.1039/d4dt02159b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Targeting pour point depressants of low-molecular weight and branched polyethylenes, a series of 9-[2,4-bis(benzhydryl)-6-R-phenylimino]-5,6,7,8-tetrahydro-cycloheptapyridine-nickel complexes (Ni1-Ni10) were developed as efficient precatalysts. Upon activation with either EASC or MAO, all nickel complex precatalysts exhibited high activity [up to 8.12 × 106 g PE (mol of Ni)-1 h-1] with single-site behavior toward ethylene polymerization, producing low-molecular weight and unimodal polyethylenes. The resultant polyethylenes possessed high branching with predominant methyl groups and longer chains, along with either internal vinylene or vinyl end groups. The activities of these complex precatalysts were heavily rationalized on the basis of the electronic and steric influences of their 6-R-substituents, with bromides following the order of Ni5 (F) > Ni4 (Cl) > Ni1 (Me) > Ni2 (Et) > Ni3 (iPr) and chlorides following the order of Ni10 (F) > Ni9 (Cl) > Ni6 (Me) > Ni7 (Et) > Ni8 (iPr). DFT calculations revealed the crucial role of agostic interactions (-Ni⋯H-C(Ph2)) between the nickel metal and the hydrogen atom of the ortho bulky group in achieving high catalytic activity and intramolecular hydrogen bonding with the fluoride atom in producing low Mw PE wax. Moreover, the organic compounds and nickel complexes were well characterized, including representative complexes Ni3 and Ni4, via single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Zhao Ning
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yanning Zeng
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Yizhou Wang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Aoqian Xi
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Yousuf N, Ma Y, Mahmood Q, Zhang W, Wang Y, Saeed H, Sun WH. Enhancing isoprene polymerization with high activity and adjustable monomer enchainment using cyclooctyl-fused iminopyridine iron precatalysts. Dalton Trans 2024; 53:753-764. [PMID: 38086665 DOI: 10.1039/d3dt03674j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In this study, a series of structurally rigid cyclooctyl-fused iminopyridine iron complexes, [L2FeCl][FeCl4] and [2L3Fe][Cl][3FeCl4], was synthesized via a one-pot method and investigated as precatalysts in conjunction with methylaluminoxane for isoprene (Ip) polymerization. Combined characterization through FTIR analysis, elemental analysis and single crystal XRD analysis fully verified the structure of these complexes. The most active iron complex, FeH, exhibited a trisligated nature, with its cation adopting an octahedral geometry around the metal center. In contrast, all the other iron complexes (Fe2Me, Fe2Et, Fe2iPr, Fe3Me, Fe2Et,Me) displayed bisligated configurations, with distorted trigonal bipyramidal geometry of cations. During isoprene polymerization, the extent of steric hindrance of the ligand framework exerted a significant impact on catalytic performance. The FeH precatalyst with less steric hindrance demonstrated excellent performance, producing high molecular weight polyisoprenes with conversions exceeding 99% for 4000 equiv. of monomer. Even at very low catalyst loadings, as low as 0.0025 mol% (Fe/Ip), the polymerization of isoprene could proceed smoothly with an exceptionally high activity of 4.0 × 106 gPI (molFe, h)-1. Moreover, this precatalyst exhibited good thermal stability, maintaining high activity levels (typically 105 gPI (molFe, h)-1) across a broad temperature range from -20 °C to 100 °C. Additionally, by adjusting steric substituents and the reaction temperature, the 1,4/3,4 regioselectivity could be modulated from 9/91 to 69/31 while maintaining a high stereoselectivity of cis-1,4 structures (cis/trans: >99/1).
Collapse
Affiliation(s)
- Nighat Yousuf
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China.
- CAS Research/Education Center for Excellence in Molecular Sciences and International School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qaiser Mahmood
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China.
| | - Wenjuan Zhang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Yizhou Wang
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- CAS Research/Education Center for Excellence in Molecular Sciences and International School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hassan Saeed
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China.
- CAS Research/Education Center for Excellence in Molecular Sciences and International School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China.
- CAS Research/Education Center for Excellence in Molecular Sciences and International School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Liao YD, Cai Q, Dai SY. Synthesis of High Molecular Weight Polyethylene and E-MA Copolymers Using Iminopyridine Ni(II) and Pd(II) Complexes Containing a Flexible Backbone and Rigid Axial Substituents. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Mahmood Q, Li X, Qin L, Wang L, Sun WH. Structural evolution of iminopyridine support for nickel/palladium catalysts in ethylene (oligo)polymerization. Dalton Trans 2022; 51:14375-14407. [PMID: 36047748 DOI: 10.1039/d2dt02251f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interest in the late transition metal catalyst based design of new architectures of polyethylene (PE) has continuously been increasing over the last few years. The structure of these catalysts is predominantly important in controlling the morphological and architectural properties of the resulting polyethylene. Particularly, iminopyridine is a versatile bidentate support for Ni and Pd catalysts in ethylene (oligo)polymerization providing a wide variety of products ranging from volatile oligomers to ultra-high molecular weight polyethylene. Extensive structural modifications have been induced in the iminopyridine ligand through steric and electronic substitution, tuning the catalyst behavior in terms of activity and properties of the resulting polymer. Carbocyclic-fused iminopyridine and N-oxide iminopyridine are the new state of the art iminopyridine ligand designs. In this review, we aim to summarize all the developments in mononuclear iminopyridine-nickel and -palladium catalysts for ethylene (oligo)polymerization since the first report published in 1999 to present, focusing on the correlation among the pre-catalyst, co-catalyst type, thermal stability and polymer/oligomer structure. For comparison, the structural variations in the binuclear iminopyridine-nickel catalysts are also described. The detailed comparison of the structural variations in these catalysts with respect to their polymerization performance will give deep understanding in the development of new efficient catalyst designs.
Collapse
Affiliation(s)
- Qaiser Mahmood
- Guangdong Laboratory of Chemistry and Chemical Engineering, Shantou 515031, China.
| | - Xiaoxu Li
- Guangdong Laboratory of Chemistry and Chemical Engineering, Shantou 515031, China.
| | - Lidong Qin
- Guangdong Laboratory of Chemistry and Chemical Engineering, Shantou 515031, China.
| | - Luyao Wang
- Guangdong Laboratory of Chemistry and Chemical Engineering, Shantou 515031, China.
| | - Wen-Hua Sun
- Guangdong Laboratory of Chemistry and Chemical Engineering, Shantou 515031, China. .,Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|