1
|
Budiman YP, Perutz RN, Steel PG, Radius U, Marder TB. Applications of Transition Metal-Catalyzed ortho-Fluorine-Directed C-H Functionalization of (Poly)fluoroarenes in Organic Synthesis. Chem Rev 2024; 124:4822-4862. [PMID: 38564710 PMCID: PMC11046440 DOI: 10.1021/acs.chemrev.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The synthesis of organic compounds efficiently via fewer steps but in higher yields is desirable as this reduces energy and reagent use, waste production, and thus environmental impact as well as cost. The reactivity of C-H bonds ortho to fluorine substituents in (poly)fluoroarenes with metal centers is enhanced relative to meta and para positions. Thus, direct C-H functionalization of (poly)fluoroarenes without prefunctionalization is becoming a significant area of research in organic chemistry. Novel and selective methodologies to functionalize (poly)fluorinated arenes by taking advantage of the reactivity of C-H bonds ortho to C-F bonds are continuously being developed. This review summarizes the reasons for the enhanced reactivity and the consequent developments in the synthesis of valuable (poly)fluoroarene-containing organic compounds.
Collapse
Affiliation(s)
- Yudha P. Budiman
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Sumedang, Indonesia
| | - Robin N. Perutz
- Department
of Chemistry, University of York, York, YO10 5DD, U.K.
| | - Patrick G. Steel
- Department
of Chemistry, University of Durham, Science
Laboratories, South Road, Durham, DH1 3LE, U.K.
| | - Udo Radius
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Todd B. Marder
- Institute
for Inorganic Chemistry, Julius-Maximilians-Universität
Würzburg, Am Hubland, 97074 Würzburg Germany
- Institute
for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| |
Collapse
|
2
|
Budiman YP, Putra MH, Ramadhan MR, Hannifah R, Luz C, Ghafara IZ, Rustaman R, Ernawati EE, Mayanti T, Groß A, Radius U, Marder TB. Pd-Catalyzed Oxidative C-H Arylation of (Poly)fluoroarenes with Aryl Pinacol Boronates and Experimental and Theoretical Studies of its Reaction Mechanism. Chem Asian J 2024; 19:e202400094. [PMID: 38412058 DOI: 10.1002/asia.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
We report the synergistic combination of Pd(OAc)2 and Ag2O for the oxidative C-H arylation of (poly)fluoroarenes with aryl pinacol boronates (Ar-Bpin) in DMF as the solvent. This procedure can be conducted easily in air, and without using additional ligands, to afford the fluorinated unsymmetrical biaryl products in up to 98 % yield. Experimental studies suggest that the formation of [PdL2(C6F5)2] in DMF as coordinating solvent does not take place under the reaction conditions as it is stable to reductive elimination and thus would deactivate the catalyst. Thus, the intermediate [Pd(DMF)2(ArF)(Ar)] must be formed selectively to give desired arylation products. DFT calculations predict a low barrier (5.87 kcal/mol) for the concerted metalation deprotonation (CMD) process between C6F5H and the Pd(II) species formed after transmetalation between the Pd(II)X2 complex and aryl-Bpin which forms a Pd-Arrich species. Thus a Pd(Arrich)(Arpoor) complex is generated selectively which undergoes reductive elimination to generate the unsymmetrical biaryl product.
Collapse
Affiliation(s)
- Yudha P Budiman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | | | - Muhammad R Ramadhan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Raiza Hannifah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Christian Luz
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ilham Z Ghafara
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Rustaman Rustaman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Engela E Ernawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Tri Mayanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Sumedang, Indonesia
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, 89081, Ulm, Germany
- Helmholtz Institute Ulm (HIU), Electrochemical Energy Storage, 89069, Ulm, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|