1
|
Kumar R, Meher RK, Karmakar H, Panda TK. Hydrosilylation of nitriles and tertiary amides using a zinc precursor. Org Biomol Chem 2024; 22:3053-3058. [PMID: 38545870 DOI: 10.1039/d4ob00161c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
We report a competent and selective hydrosilylation of nitriles and tertiary amides catalyzed by the readily available zinc bis(hexamethyldisilazide) under solvent-free and mild conditions, making it a sustainable and desirable alternative to existing methods. Both protocols afforded high conversion, superior selectivity, and a broad substrate scope, from electron-withdrawing to electron-donating and heterocyclic substitutions.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Rohan Kumar Meher
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Himadri Karmakar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
2
|
Mandal C, Joshi S, Das S, Mishra S, Mukherjee D. 2-Anilidomethylpyridine-Derived Three-Coordinate Zinc Hydride: The Journey Unveils Anilide Backbone's Reactive Nature. Inorg Chem 2024; 63:739-751. [PMID: 38127496 DOI: 10.1021/acs.inorgchem.3c03673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Low-coordinate heteroleptic zinc hydrides are catalytically important but rare and synthetically challenging. We herein report three-coordinate monomeric zinc hydride on a 2-anilidomethylpyridine framework (NNL). The synthetic success comes through systematically screening a few different routes from different precursors. During the process, the ligand's anilide backbone interestingly appears to be more reactive than Zn's terminal site to electrophilic Lewis and Brønsted acids. The proligand NNLH reacts with [Zn{N(SiMe3)2}2] and ZnEt2 to give [(NNL)ZnA] (A = N(SiMe3)2 (1), Et(2)). Both are inert to PhSiH3 and H2 but react with HBpin only through the internal Zn-Nanilide bond to give the borylated ligand NNLBpin (3). The reactions of 1 and 2 with Ph3EOH (E = C, Si) afford a series of divergent compounds like [(NNLH)Zn(OSiPh3)2] (4), [Zn3(OSiPh3)4Et2] (5), and [EtZn(OCPh3)] (6). But in all cases, it is invariably the Zn-Nanilide bond protonated by the -OH with equal or higher preference than the terminal Zn-N or Zn-C bonds. A DFT analysis rationalizes the origin of such a reactivity pattern. Realizing that an acid-free route might be the key, reacting [(NNL)Li] with ZnBr2 gives [(NNL)Zn(μ-Br)]2 (7), which on successively treating with KOSiPh3 and PhSiH3 gives the desired [(NNL)ZnH] (8) as a three-coordinate monomer with a terminal Zn-H bond. Estimating the ligand steric in 8 shows the openness in Zn's coordination sphere, a desired criterion for efficient catalysis. This and a positive influence of the pyridyl sidearm is reflected in 8's superior activity in hydroborating PhC(O)Me by HBpin in comparison to Jones' two-coordinate anilido zinc hydride.
Collapse
Affiliation(s)
- Chhotan Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Shalini Joshi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sanjay Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Debabrata Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
3
|
Hammond M, Vaccaro DA, Parkin G. Synthesis and structural characterization of thallium and cadmium carbatrane compounds, [ TismPriBenz]Tl and [ TismPriBenz]CdMe. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Ruccolo S, Sambade D, Shlian DG, Amemiya E, Parkin G. Catalytic reduction of carbon dioxide by a zinc hydride compound, [Tptm]ZnH, and conversion to the methanol level. Dalton Trans 2022; 51:5868-5877. [PMID: 35343979 DOI: 10.1039/d1dt04156h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The zinc hydride compound, [Tptm]ZnH, may achieve the reduction of CO2 by (RO)3SiH (R = Me, Et) to the methanol oxidation level, (MeO)xSi(OR)4-x, via the formate species, HCO2Si(OR)3. However, because insertion of CO2 into the Zn-H bond is more facile than insertion of HCO2Si(OR)3, conversion of HCO2Si(OR)3 to the methanol level only occurs to a significant extent in the absence of CO2.
Collapse
Affiliation(s)
- Serge Ruccolo
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - David Sambade
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Daniel G Shlian
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Erika Amemiya
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| |
Collapse
|
5
|
Shlian DG, Amemiya E, Parkin G. Synthesis of bis(2-pyridylthio)methyl zinc hydride and catalytic hydrosilylation and hydroboration of CO 2. Chem Commun (Camb) 2022; 58:4188-4191. [PMID: 35266933 DOI: 10.1039/d1cc06963b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of bis(2-pyridylthio)methane with Me2Zn and Zn[N(SiMe3)2]2 afford [Bptm]ZnMe and [Bptm]ZnN(SiMe3)2, thereby providing access to a variety of other [Bptm]ZnX derivatives, including the zinc hydride complex [Bptm]ZnH, which serves as a catalyst for the reduction of CO2 and other carbonyl compounds via hydrosilylation and hydroboration.
Collapse
Affiliation(s)
- Daniel G Shlian
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| | - Erika Amemiya
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
6
|
Roy MMD, Omaña AA, Wilson ASS, Hill MS, Aldridge S, Rivard E. Molecular Main Group Metal Hydrides. Chem Rev 2021; 121:12784-12965. [PMID: 34450005 DOI: 10.1021/acs.chemrev.1c00278] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review serves to document advances in the synthesis, versatile bonding, and reactivity of molecular main group metal hydrides within Groups 1, 2, and 12-16. Particular attention will be given to the emerging use of said hydrides in the rapidly expanding field of Main Group element-mediated catalysis. While this review is comprehensive in nature, focus will be given to research appearing in the open literature since 2001.
Collapse
Affiliation(s)
- Matthew M D Roy
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Andrew S S Wilson
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Michael S Hill
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
7
|
Hammond M, Rauch M, Parkin G. Synthesis, Structure, and Reactivity of a Terminal Cadmium Hydride Compound, [κ 3-Tism PriBenz]CdH. J Am Chem Soc 2021; 143:10553-10559. [PMID: 34236838 DOI: 10.1021/jacs.1c04987] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The terminal cadmium hydride compound, [κ3-TismPriBenz]CdH, which features the tris[(1-isopropylbenzimidazol-2-yl)dimethylsilyl]methyl ligand, may be obtained via the reactions of either [κ3-TismPriBenz]CdN(SiMe3)2 or [TismPriBenz]CdOSiPh3 with PhSiH3. The Cd-H bond of [κ3-TismPriBenz]CdH undergoes (a) metathesis reactions with MeI, Me3SiX (X = Cl, Br, I, NCO), and Me3SnX (X = Cl, Br, I) to afford the corresponding [TismPriBenz]CdX derivative, (b) insertion with CO2 and CS2 to afford respectively [TismPriBenz]Cd(κ1-O2CH) and [TismPriBenz]Cd(κ1-S2CH), and (c) hydride abstraction with B(C6F5)3 to afford {[TismPriBenz]Cd}[HB(C6F5)3] that possesses a rare trigonal monopyramidal geometry for cadmium.
Collapse
Affiliation(s)
- Matthew Hammond
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael Rauch
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
8
|
Sahoo RK, Sarkar N, Nembenna S. Zinc Hydride Catalyzed Chemoselective Hydroboration of Isocyanates: Amide Bond Formation and C=O Bond Cleavage. Angew Chem Int Ed Engl 2021; 60:11991-12000. [PMID: 33638314 DOI: 10.1002/anie.202100375] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/16/2021] [Indexed: 12/15/2022]
Abstract
Herein, a remarkable conjugated bis-guanidinate (CBG) supported zinc hydride, [{LZnH}2 ; L={(ArHN)(ArN)-C=N-C=(NAr)(NHAr); Ar=2,6-Et2 -C6 H3 }] (I) catalyzed partial reduction of heteroallenes via hydroboration is reported. A large number of aryl and alkyl isocyanates, including electron-donating and withdrawing groups, undergo reduction to obtain selectively N-boryl formamide, bis(boryl) hemiaminal and N-boryl methyl amine products. The compound I effectively catalyzes the chemoselective reduction of various isocyanates, in which the construction of the amide bond occurs. Isocyanates undergo a deoxygenation hydroboration reaction, in which the C=O bond cleaves, leading to N-boryl methyl amines. Several functionalities such as nitro, cyano, halide, and alkene groups are well-tolerated. Furthermore, a series of kinetic, control experiments and structurally characterized intermediates suggest that the zinc hydride species are responsible for all reduction steps and breaking the C=O bond.
Collapse
Affiliation(s)
- Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Nabin Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| |
Collapse
|
9
|
Chambenahalli R, Bhargav RM, McCabe KN, Andrews AP, Ritter F, Okuda J, Maron L, Venugopal A. Cationic Zinc Hydride Catalyzed Carbon Dioxide Reduction to Formate: Deciphering Elementary Reactions, Isolation of Intermediates, and Computational Investigations. Chemistry 2021; 27:7391-7401. [PMID: 33459452 DOI: 10.1002/chem.202005392] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Indexed: 01/06/2023]
Abstract
Zinc has been an element of choice for carbon dioxide reduction in recent years. Zinc compounds have been showcased as catalysts for carbon dioxide hydrosilylation and hydroboration. The extent of carbon dioxide reduction can depend on various factors, including electrophilicity at the zinc center and the denticity of the ancillary ligands. In a few cases, the addition of Lewis acids to zinc hydride catalysts markedly influences carbon dioxide reduction. These factors have been investigated by exploring elementary reactions of carbon dioxide hydrosilylation and hydroboration by using cationic zinc hydrides bearing tetradentate tris[2-(dimethylamino)ethyl]amine and tridentate N,N,N',N'',N''-pentamethyldiethylenetriamine in the presence of triphenylborane and tris(pentafluorophenyl)borane.
Collapse
Affiliation(s)
- Raju Chambenahalli
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - R M Bhargav
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - Karl N McCabe
- LPCNO, UMR 5215, Université de Toulouse-CNRS, INSA, UPS, 31077, Toulouse, France
| | - Alex P Andrews
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - Florian Ritter
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| | - Laurent Maron
- LPCNO, UMR 5215, Université de Toulouse-CNRS, INSA, UPS, 31077, Toulouse, France
| | - Ajay Venugopal
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| |
Collapse
|
10
|
Zinc Hydride Catalyzed Chemoselective Hydroboration of Isocyanates: Amide Bond Formation and C=O Bond Cleavage. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Eedugurala N, Wang Z, Kanbur U, Ellern A, Pruski M, Sadow AD. Synthesis and Characterization of Tris(oxazolinyl)borato Copper(II) and Copper(I) Complexes. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Naresh Eedugurala
- Department of Chemistry Iowa State University 1605 Gilman Hall Ames IA 50011 United States
- U.S. Department of Energy Ames Laboratory 2416 Pammel Drive Iowa State University Ames IA 50011 United States
| | - Zhuoran Wang
- Department of Chemistry Iowa State University 1605 Gilman Hall Ames IA 50011 United States
- U.S. Department of Energy Ames Laboratory 2416 Pammel Drive Iowa State University Ames IA 50011 United States
| | - Uddhav Kanbur
- Department of Chemistry Iowa State University 1605 Gilman Hall Ames IA 50011 United States
- U.S. Department of Energy Ames Laboratory 2416 Pammel Drive Iowa State University Ames IA 50011 United States
| | - Arkady Ellern
- Department of Chemistry Iowa State University 1605 Gilman Hall Ames IA 50011 United States
| | - Marek Pruski
- Department of Chemistry Iowa State University 1605 Gilman Hall Ames IA 50011 United States
- U.S. Department of Energy Ames Laboratory 2416 Pammel Drive Iowa State University Ames IA 50011 United States
| | - Aaron D. Sadow
- Department of Chemistry Iowa State University 1605 Gilman Hall Ames IA 50011 United States
- U.S. Department of Energy Ames Laboratory 2416 Pammel Drive Iowa State University Ames IA 50011 United States
| |
Collapse
|
12
|
Quinlivan PJ, Loo A, Shlian DG, Martinez J, Parkin G. N-Heterocyclic Carbene Complexes of Nickel, Palladium, and Iridium Derived from Nitron: Synthesis, Structures, and Catalytic Properties. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00679] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Patrick J. Quinlivan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Aaron Loo
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Daniel G. Shlian
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Joan Martinez
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
13
|
Amemiya E, Loo A, Shlian DG, Parkin G. Rhenium versus cadmium: an alternative structure for a thermally stable cadmium carbonyl compound. Chem Sci 2020; 11:11763-11776. [PMID: 34123203 PMCID: PMC8162458 DOI: 10.1039/d0sc04596a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
An alternative description is provided for the previously reported novel tetranuclear cadmium carbonyl compound, [Cd(CO)3(C6H3Cl)]4. Specifically, consideration of single crystal X-ray diffraction data indicates that the compound is better formulated as the rhenium compound, [Re(CO)3(C4N2H3S)]4. Furthermore, density functional theory calculations predict that, if it were to exist, [Cd(CO)3(C6H3Cl)]4 would have a very different structure to that reported. While it is well known that X-ray diffraction may not reliably distinguish between atoms of similar atomic number (e.g. N/C and Cl/S), it is not generally recognized that two atoms with very different atomic numbers could be misassigned. The misidentification of two elements as diverse as Re and Cd (ΔZ = 27) is unexpected and serves as an important caveat for structure determinations.
Collapse
Affiliation(s)
- Erika Amemiya
- Department of Chemistry, Columbia University New York 10027 USA
| | - Aaron Loo
- Department of Chemistry, Columbia University New York 10027 USA
| | - Daniel G Shlian
- Department of Chemistry, Columbia University New York 10027 USA
| | - Gerard Parkin
- Department of Chemistry, Columbia University New York 10027 USA
| |
Collapse
|
14
|
Sahoo RK, Mahato M, Jana A, Nembenna S. Zinc Hydride-Catalyzed Hydrofuntionalization of Ketones. J Org Chem 2020; 85:11200-11210. [PMID: 32786632 DOI: 10.1021/acs.joc.0c01285] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three new dimeric bis-guanidinate zinc(II) alkyl, halide, and hydride complexes [LZnEt]2 (1), [LZnI]2 (2) and [LZnH]2 (3) were prepared. Compound 3 was successfully employed for the hydrosilylation and hydroboration of a vast number of ketones. The catalytic performance of 3 in the hydroboration of acetophenone exhibits a turnover frequency, reaching up to 5800 h-1, outperforming that of reported zinc hydride catalysts. Notably, both intra- and intermolecular chemoselective hydrosilylation and hydroboration reactions have been investigated.
Collapse
Affiliation(s)
- Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar 752 050, India
| | - Mamata Mahato
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar 752 050, India
| | - Achintya Jana
- Undergraduate Programme, Indian Institute of Science, Bangalore 560 012, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar 752 050, India
| |
Collapse
|
15
|
Sattler W, Shlian DG, Sambade D, Parkin G. Synthesis and structural characterization of bis(2-pyridylthio)(p-tolylthio)methyl zinc complexes and the catalytic hydrosilylation of CO2. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Rauch M, Kar S, Kumar A, Avram L, Shimon LJW, Milstein D. Metal-Ligand Cooperation Facilitates Bond Activation and Catalytic Hydrogenation with Zinc Pincer Complexes. J Am Chem Soc 2020; 142:14513-14521. [PMID: 32786799 PMCID: PMC7453403 DOI: 10.1021/jacs.0c05500] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
A series of PNP zinc pincer complexes
capable of bond activation
via aromatization/dearomatization metal–ligand cooperation
(MLC) were prepared and characterized. Reversible heterolytic N–H
and H–H bond activation by MLC is shown, in which hemilability
of the phosphorus linkers plays a key role. Utilizing this zinc pincer
system, base-free catalytic hydrogenation of imines and ketones is
demonstrated. A detailed mechanistic study supported by computation
implicates the key role of MLC in facilitating effective catalysis.
This approach offers a new strategy for (de)hydrogenation and other
catalytic transformations mediated by zinc and other main group metals.
Collapse
Affiliation(s)
- Michael Rauch
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sayan Kar
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Amit Kumar
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liat Avram
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Milstein
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
17
|
Jia W, Du T, Gao L, Du J. Synthesis, characterization, and catalytic activity of half‐sandwich ruthenium complexes with pyridine/phenylene bridged NHC = E (NHC = N‐heterocyclic carbene, E = S, Se) ligands. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei‐Guo Jia
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241002 China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of Science Fuzhou 350002 China
| | - Teng‐Teng Du
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241002 China
| | - Li‐Li Gao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241002 China
| | - Jun Du
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials ScienceAnhui Normal University Wuhu 241002 China
| |
Collapse
|
18
|
Morris LJ, Hill MS, Mahon MF, Manners I, S McMenamy F, Whittell GR. Heavier Alkaline-Earth Catalyzed Dehydrocoupling of Silanes and Alcohols for the Synthesis of Metallo-Polysilylethers. Chemistry 2020; 26:2954-2966. [PMID: 31899846 DOI: 10.1002/chem.201905313] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Indexed: 11/07/2022]
Abstract
The dehydrocoupling of silanes and alcohols mediated by heavier alkaline-earth catalysts, [Ae{N(SiMe3 )2 }2 ⋅(THF)2 ] (I-III) and [Ae{CH(SiMe3 )2 }2 ⋅(THF)2 ], (IV-VI) (Ae=Ca, Sr, Ba) is described. Primary, secondary, and tertiary alcohols were coupled to phenylsilane or diphenylsilane, whereas tertiary silanes are less tolerant towards bulky substrates. Some control over reaction selectivity towards mono-, di-, or tri-substituted silylether products was achieved through alteration of reaction stoichiometry, conditions, and catalyst. The ferrocenyl silylether, FeCp(C5 H4 SiPh(OBn)2 ) (2), was prepared and fully characterized from the ferrocenylsilane, FeCp(C5 H4 SiPhH2 ) (1), and benzyl alcohol using barium catalysis. Stoichiometric experiments suggested a reaction manifold involving the formation of Ae-alkoxide and hydride species, and a series of dimeric Ae-alkoxides [(Ph3 CO)Ae(μ2 -OCPh3 )Ae(THF)] (3 a-c, Ae=Ca, Sr, Ba) were isolated and fully characterized. Mechanistic experiments suggested a complex reaction mechanism involving dimeric or polynuclear active species, whose kinetics are highly dependent on variables such as the identity and concentration of the precatalyst, silane, and alcohol. Turnover frequencies increase on descending Group 2 of the periodic table, with the barium precatalyst III displaying an apparent first-order dependence in both silane and alcohol, and an optimum catalyst loading of 3 mol % Ba, above which activity decreases. With precatalyst III in THF, ferrocene-containing poly- and oligosilylethers with ferrocene pendent to- (P1-P4) or as a constituent (P5, P6) of the main polymer chain were prepared from 1 or Fe(C5 H4 SiPhH2 )2 (4) with diols 1,4-(HOCH2 )2 -(C6 H4 ) and 1,4-(CH(CH3 )OH)2 -(C6 H4 ), respectively. The resultant materials were characterized by NMR spectroscopy, gel permeation chromatography (GPC) and DOSY NMR spectroscopy, with estimated molecular weights in excess of 20,000 Da for P1 and P4. The iron centers display reversible redox behavior and thermal analysis showed P1 and P5 to be promising precursors to magnetic ceramic materials.
Collapse
Affiliation(s)
- Louis J Morris
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.,School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Michael S Hill
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Mary F Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Ian Manners
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.,Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Fred S McMenamy
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - George R Whittell
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
19
|
Reuter MB, Cibuzar MP, Hammerton J, Waterman R. Photoactivated silicon–oxygen and silicon–nitrogen heterodehydrocoupling with a commercially available iron compound. Dalton Trans 2020; 49:2972-2978. [DOI: 10.1039/c9dt04870g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A commercially available iron readily engages in catalytic Si–O and Si–N bond formation under visible light irradiation.
Collapse
Affiliation(s)
| | | | | | - Rory Waterman
- University of Vermont
- Department of Chemistry
- Burlington
- USA
| |
Collapse
|
20
|
Nogues C, Argouarch G. Synthesis of dialkoxydiphenylsilanes via the rhodium-catalyzed hydrosilylation of aldehydes. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Jia WG, Gao LL, Wang ZB, Sun LY, Han YF. Synthesis, Characterization, and Catalytic Activities of Palladium Complexes with Phenylene-Bridged Bis(thione) Ligands. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei-Guo Jia
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Li-Li Gao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Zhi-Bao Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Li-Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
22
|
Bartlewicz O, Jankowska-Wajda M, Maciejewski H. New anionic rhodium complexes as catalysts for the reduction of acetophenone and its derivatives. RSC Adv 2019; 9:711-720. [PMID: 35517621 PMCID: PMC9059508 DOI: 10.1039/c8ra08954j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/16/2018] [Indexed: 01/22/2023] Open
Abstract
New anionic rhodium(iii) complexes, obtained by a simple reaction of RhCl3 with organic chlorides (derivatives of imidazole and pyridine), have been employed as catalysts for hydrosilylation (reduction) of acetophenone derivatives. The reactions, in which 1,1,1,3,5,5,5-heptamethyltrisiloxane was a reducing agent, proceeded in a biphasic system because the above complexes are insoluble in the reaction medium. Thereby easy isolation of the complexes from post-reaction mixtures was possible after reaction completion. This is the first example of the application of rhodium complexes of this type as catalysts for ketone reduction. The complexes have shown high activity and enabled obtaining the hydrosilylation product in a very short time and in the range of low concentrations (0.1 mol%). By using FT-IR in situ analysis that enables measuring product concentrations in real time, a comparison has been made of the catalytic activity for hydrosilylation of acetophenone and methoxyacetophenone isomers shown by four rhodium complexes ([C+][RhCl4 -]) differing in cations and the most effective catalyst for this process has been distinguished.
Collapse
Affiliation(s)
- Olga Bartlewicz
- Faculty of Chemistry, Adam Mickiewicz University in Poznań Umultowska 89B 61-614 Poznań Poland
| | | | - Hieronim Maciejewski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań Umultowska 89B 61-614 Poznań Poland
- Poznań Science and Technology Park, A. Mickiewicz University Foundation Rubież 46 61-612 Poznań Poland
| |
Collapse
|
23
|
Monda F, Madsen R. Zinc Oxide-Catalyzed Dehydrogenation of Primary Alcohols into Carboxylic Acids. Chemistry 2018; 24:17832-17837. [PMID: 30273451 DOI: 10.1002/chem.201804402] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 01/21/2023]
Abstract
Zinc oxide has been developed as a catalyst for the dehydrogenation of primary alcohols into carboxylic acids and hydrogen gas. The reaction is performed in mesitylene solution in the presence of potassium hydroxide, followed by workup with hydrochloric acid. The transformation can be applied to both benzylic and aliphatic primary alcohols and the catalytically active species was shown to be a homogeneous compound by a hot filtration test. Dialkylzinc and strongly basic zinc salts also catalyze the dehydrogenation with similar results. The mechanism is believed to involve the formation of a zinc alkoxide which degrades into the aldehyde and a zinc hydride. The latter reacts with the alcohol to form hydrogen gas and regenerate the zinc alkoxide. The degradation of a zinc alkoxide into the aldehyde upon heating was confirmed experimentally. The aldehyde can then undergo a Cannizzaro reaction or a Tishchenko reaction, which in the presence of hydroxide leads to the carboxylic acid.
Collapse
Affiliation(s)
- Fabrizio Monda
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Robert Madsen
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
24
|
Hydrosilane synthesis via catalytic hydrogenolysis of halosilanes using a metal-ligand bifunctional iridium catalyst. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.05.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Chen H, Fang S, Wang J, Wei H. Nitrido complex of high-valent Ru(VI) -catalyzed reduction of imines and alkynes with hydrosilanes: A theoretical study of the reaction mechanism. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Ruccolo S, Rauch M, Parkin G. Synthesis and Structural Characterization of Tris(isopropylbenzimidazol-2-ylthio)methyl Zinc Complexes, [TitmPriBenz]ZnX: Modulation of Transannular Zn–C Interactions. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Serge Ruccolo
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael Rauch
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
27
|
Singh V, Sakaki S, Deshmukh MM. Ni(I)-Hydride Catalyst for Hydrosilylation of Carbon Dioxide and Dihydrogen Generation: Theoretical Prediction and Exploration of Full Catalytic Cycle. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vijay Singh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| | - Shigeyoshi Sakaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Nishihiraki-cho, Sakyo-ku, Takano, Kyoto 606-8103, Japan
| | - Milind M. Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| |
Collapse
|
28
|
Rock CL, Groy TL, Trovitch RJ. Carbonyl and ester C–O bond hydrosilylation using κ4-diimine nickel catalysts. Dalton Trans 2018; 47:8807-8816. [DOI: 10.1039/c8dt01857j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
(Ph2PPrDI)Ni chemoselectively catalyzes α-allyl ester C–O bond hydrosilylation to prepare silyl esters with turnover frequencies of up to 990 h−1.
Collapse
Affiliation(s)
| | - Thomas L. Groy
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
| | | |
Collapse
|
29
|
Liu G, Wang Y, Zhu B, Zhang L, Su CY. A porous metal–organic aerogel based on dirhodium paddle-wheels as an efficient and stable heterogeneous catalyst towards the reduction reaction of aldehydes and ketones. NEW J CHEM 2018. [DOI: 10.1039/c8nj01784k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new mesoporous metal–organic aerogel based on dirhodium paddle-wheels has been successfully synthesized and applied in the hydrosilylation reaction of aldehydes and ketones.
Collapse
Affiliation(s)
- Gang Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| | - Yanhu Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| | - Baofu Zhu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| | - Li Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry
- Lehn Institute of Functional Materials
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
| |
Collapse
|
30
|
Frogneux X, Borondics F, Lefrançois S, D'Accriscio F, Sanchez C, Carenco S. Surprisingly high sensitivity of copper nanoparticles toward coordinating ligands: consequences for the hydride reduction of benzaldehyde. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01516c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Depending on the ligand, ligand-induced leaching of copper nanoparticles may produce catalytically active species for the reduction of benzaldehyde.
Collapse
Affiliation(s)
- Xavier Frogneux
- Sorbonne Université
- CNRS
- Collège de France
- Laboratoire de Chimie de la Matière Condensée de Paris
- F-75005 Paris
| | | | | | - Florian D'Accriscio
- Sorbonne Université
- CNRS
- Collège de France
- Laboratoire de Chimie de la Matière Condensée de Paris
- F-75005 Paris
| | - Clément Sanchez
- Sorbonne Université
- CNRS
- Collège de France
- Laboratoire de Chimie de la Matière Condensée de Paris
- F-75005 Paris
| | - Sophie Carenco
- Sorbonne Université
- CNRS
- Collège de France
- Laboratoire de Chimie de la Matière Condensée de Paris
- F-75005 Paris
| |
Collapse
|
31
|
Neary MC, Quinlivan PJ, Parkin G. Zerovalent Nickel Compounds Supported by 1,2-Bis(diphenylphosphino)benzene: Synthesis, Structures, and Catalytic Properties. Inorg Chem 2017; 57:374-391. [DOI: 10.1021/acs.inorgchem.7b02636] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michelle C. Neary
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Patrick J. Quinlivan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
32
|
Mukhopadhyay TK, Ghosh C, Flores M, Groy TL, Trovitch RJ. Hydrosilylation of Aldehydes and Formates Using a Dimeric Manganese Precatalyst. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00423] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tufan K. Mukhopadhyay
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Chandrani Ghosh
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Marco Flores
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas L. Groy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryan J. Trovitch
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
33
|
Ruccolo S, Rauch M, Parkin G. Tris[(1-isopropylbenzimidazol-2-yl)dimethylsilyl]methyl metal complexes, [Tism PriBenz]M: a new class of metallacarbatranes, isomerization to a tris(N-heterocyclic carbene) derivative, and evidence for an inverted ligand field. Chem Sci 2017; 8:4465-4474. [PMID: 30155219 PMCID: PMC6100236 DOI: 10.1039/c7sc00499k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/27/2017] [Indexed: 11/22/2022] Open
Abstract
The tris[(1-isopropylbenzimidazol-2-yl)dimethylsilyl]methyl ligand, [TismPriBenz], has been employed to form carbatrane compounds of both the main group metals and transition metals, namely [TismPriBenz]Li, [TismPriBenz]MgMe, [TismPriBenz]Cu and [TismPriBenz]NiBr. In addition to the formation of atranes, a zinc compound that exhibits κ3-coordination, namely [κ3-TismPriBenz]ZnMe, has also been obtained. Furthermore, the [TismPriBenz] ligand may undergo a thermally induced rearrangement to afford a novel tripodal tris(N-heterocyclic carbene) variant, as shown by the conversion of [TismPriBenz]Cu to [κ4-C4-TismPriBenz*]Cu. The transannular M-C bond lengths in the atrane compounds are 0.19-0.32 Å longer than the sum of the respective covalent radii, which is consistent with a bonding description that features a formally zwitterionic component. Interestingly, computational studies demonstrate that the Cu-Catrane interactions in [TismPriBenz]Cu and [κ4-C4-TismPriBenz*]Cu are characterized by an "inverted ligand field", in which the occupied antibonding orbitals are localized more on carbon than on copper.
Collapse
Affiliation(s)
- Serge Ruccolo
- Department of Chemistry , Columbia University , New York 10027 , USA .
| | - Michael Rauch
- Department of Chemistry , Columbia University , New York 10027 , USA .
| | - Gerard Parkin
- Department of Chemistry , Columbia University , New York 10027 , USA .
| |
Collapse
|
34
|
Mukhopadhyay TK, Rock CL, Hong M, Ashley DC, Groy TL, Baik MH, Trovitch RJ. Mechanistic Investigation of Bis(imino)pyridine Manganese Catalyzed Carbonyl and Carboxylate Hydrosilylation. J Am Chem Soc 2017; 139:4901-4915. [DOI: 10.1021/jacs.7b00879] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Tufan K. Mukhopadhyay
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Christopher L. Rock
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Mannkyu Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Daniel C. Ashley
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Thomas L. Groy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Ryan J. Trovitch
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
35
|
Surzhko V, Roisnel T, Le Grel B, Le Grel P, Lalli C, Argouarch G. Synthesis of picolinohydrazides and their evaluation as ligands in the zinc-catalyzed hydrosilylation of ketones. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.02.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Tafazolian H, Yoxtheimer R, Thakuri RS, Schmidt JAR. Selective hydrosilylation of alkynes and ketones: contrasting reactivity between cationic 3-iminophosphine palladium and nickel complexes. Dalton Trans 2017; 46:5431-5440. [DOI: 10.1039/c7dt00832e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New palladium(allyl) complexes proved effective for the hydrosilylation of electron-deficient alkynes, while nickel analogues excelled with ketones and internal alkynes.
Collapse
Affiliation(s)
- Hosein Tafazolian
- Department of Chemistry and Biochemistry
- School of Green Chemistry and Engineering
- College of Natural Sciences and Mathematics
- The University of Toledo
- Toledo
| | - Robert Yoxtheimer
- Department of Chemistry and Biochemistry
- School of Green Chemistry and Engineering
- College of Natural Sciences and Mathematics
- The University of Toledo
- Toledo
| | - Rajendr S. Thakuri
- Department of Chemistry and Biochemistry
- School of Green Chemistry and Engineering
- College of Natural Sciences and Mathematics
- The University of Toledo
- Toledo
| | - Joseph A. R. Schmidt
- Department of Chemistry and Biochemistry
- School of Green Chemistry and Engineering
- College of Natural Sciences and Mathematics
- The University of Toledo
- Toledo
| |
Collapse
|
37
|
Bouhachicha M, Ngo Ndimba A, Roisnel T, Lalli C, Argouarch G. Pure phosphotriesters as versatile ligands in transition metal catalysis: efficient hydrosilylation of ketones and diethylzinc addition to aldehydes. NEW J CHEM 2017. [DOI: 10.1039/c7nj00566k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phosphate fate: will proving the versatility of phosphate ligands in catalysis make them finally attractive?
Collapse
Affiliation(s)
- M. Bouhachicha
- Institut des Sciences Chimiques de Rennes
- UMR CNRS 6226
- Equipe CORINT
- Université de Rennes 1
- 35043 Rennes Cedex
| | - A. Ngo Ndimba
- Institut des Sciences Chimiques de Rennes
- UMR CNRS 6226
- Equipe CORINT
- Université de Rennes 1
- 35043 Rennes Cedex
| | - T. Roisnel
- Institut des Sciences Chimiques de Rennes
- UMR CNRS 6226
- Centre de Diffractométrie X
- Université de Rennes 1
- 35042 Rennes Cedex
| | - C. Lalli
- Institut des Sciences Chimiques de Rennes
- UMR CNRS 6226
- Equipe CORINT
- Université de Rennes 1
- 35043 Rennes Cedex
| | - G. Argouarch
- Institut des Sciences Chimiques de Rennes
- UMR CNRS 6226
- Equipe CORINT
- Université de Rennes 1
- 35043 Rennes Cedex
| |
Collapse
|
38
|
Chakrabarti N, Ruccolo S, Parkin G. Cadmium Compounds with an [N 3C] Atrane Motif: Evidence for the Generation of a Cadmium Hydride Species. Inorg Chem 2016; 55:12105-12109. [PMID: 27934411 PMCID: PMC5142449 DOI: 10.1021/acs.inorgchem.6b02196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Indexed: 01/31/2023]
Abstract
Tris(2-pyridylthio)methane ([Tptm]H) has been employed to synthesize a series of cadmium carbatrane compounds that feature an [N3C] coordination environment. Specifically, [Tptm]H reacts with Cd[N(SiMe3)2]2 to afford [Tptm]CdN(SiMe3)2, which thereby provides access to other derivatives. For example, [Tptm]CdN(SiMe3)2 reacts with (i) CO2 to form {[Tptm]Cd(μ-NCO)}2 and (ii) Me3SiOH and Ph3SiOH to form {[κ3-Tptm]Cd(μ-OSiMe3)}2 and [Tptm]CdOSiPh3, respectively. The siloxide compound {[κ3-Tptm]Cd(μ-OSiMe3)}2 reacts with Me3SiX (X = Cl, Br, O2CMe) to give [Tptm]CdX, while the reaction with PhSiH3 in the presence of CO2 generates the formate complex, [Tptm]CdO2CH, thereby providing evidence for the generation of a proposed cadmium hydride intermediate, {[Tptm]CdH}.
Collapse
Affiliation(s)
- Neena Chakrabarti
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Serge Ruccolo
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Gerard Parkin
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
39
|
Toutov AA, Betz KN, Haibach MC, Romine AM, Grubbs RH. Sodium Hydroxide Catalyzed Dehydrocoupling of Alcohols with Hydrosilanes. Org Lett 2016; 18:5776-5779. [DOI: 10.1021/acs.orglett.6b01687] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anton A. Toutov
- Arnold and Mabel Beckman
Laboratories of Chemical Synthesis, Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kerry N. Betz
- Arnold and Mabel Beckman
Laboratories of Chemical Synthesis, Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Michael C. Haibach
- Arnold and Mabel Beckman
Laboratories of Chemical Synthesis, Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Andrew M. Romine
- Arnold and Mabel Beckman
Laboratories of Chemical Synthesis, Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Robert H. Grubbs
- Arnold and Mabel Beckman
Laboratories of Chemical Synthesis, Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
40
|
Roy MMD, Ferguson MJ, McDonald R, Rivard E. Investigation of N-Heterocyclic Carbene-Supported Group 12 Triflates as Pre-catalysts for Hydrosilylation/Borylation. Chemistry 2016; 22:18236-18246. [PMID: 27797137 DOI: 10.1002/chem.201603704] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Indexed: 11/09/2022]
Abstract
N-Heterocyclic carbene (NHC) complexes of Cd and Hg triflates (OTf) were prepared and their attempted conversion into rare cadmium and mercury hydrides was explored. In contrast to zinc, which forms stable [ZnH]+ complexes with NHCs, the heavier Cd and Hg congeners could not be formed; the increased instability of Cd-H and Hg-H units was rationalized with the aid of computations. It was also discovered that the dimeric adduct [IPr⋅Cd(μ-OTf)2 ]2 (IPr=[(HCNDipp)2 C:]; Dipp=2,6-iPr2 C6 H3 ) is an active precatalyst for the hydrosilylation and hydroborylation of hindered aldehydes and ketones. The related zinc congener was inactive as a catalyst highlighting a distinct advantage of using heavy Group 12 metals to promote catalytic hydrosilylation/borylation.
Collapse
Affiliation(s)
- Matthew M D Roy
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, T6E 2G2, Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, T6E 2G2, Canada
| | - Robert McDonald
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, T6E 2G2, Canada
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, T6E 2G2, Canada
| |
Collapse
|
41
|
Ruccolo S, Sattler W, Rong Y, Parkin G. Modulation of Zn–C Bond Lengths Induced by Ligand Architecture in Zinc Carbatrane Compounds. J Am Chem Soc 2016; 138:14542-14545. [DOI: 10.1021/jacs.6b09250] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Serge Ruccolo
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Wesley Sattler
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Yi Rong
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
42
|
Han JS, Kang SH, Jung IN, Yoo BR. Deoxygenative silylation of aromatic carbonyl compounds with HSiCl 3 in the presence of quaternary phosphonium chloride: A facile route to arylmethyltrichlorosilane. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Ning X, Wang J, Wei H. New Insights into Mechanism of Molybdenum(VI)–Dioxo Complex Catalyzed Hydrosilylation of Carbonyls: An Alternative Model for Activating Si–H Bond. J Phys Chem A 2016; 120:4167-78. [DOI: 10.1021/acs.jpca.6b01978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoshuang Ning
- Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Provincial Key
Laboratory for NSLSCS, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Jiandi Wang
- Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Provincial Key
Laboratory for NSLSCS, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Haiyan Wei
- Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Provincial Key
Laboratory for NSLSCS, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
44
|
Fohlmeister L, Stasch A. Ring-Shaped Phosphinoamido-Magnesium-Hydride Complexes: Syntheses, Structures, Reactivity, and Catalysis. Chemistry 2016; 22:10235-46. [PMID: 27271460 DOI: 10.1002/chem.201601623] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Indexed: 11/10/2022]
Abstract
A series of magnesium(II) complexes bearing the sterically demanding phosphinoamide ligand, L(-) =Ph2 PNDip(-) , Dip=2,6-diisopropylphenyl, including heteroleptic magnesium alkyl and hydride complexes are described. The ligand geometry enforces various novel ring and cluster geometries for the heteroleptic compounds. We have studied the stoichiometric reactivity of [(LMgH)4 ] towards unsaturated substrates, and investigated catalytic hydroborations and hydrosilylations of ketones and pyridines. We found that hydroborations of two ketones with pinacolborane using various Mg precatalysts is very rapid at room temperature with very low catalyst loadings, and ketone hydrosilylation using phenylsilane is rapid at 70 °C. Our studies point to an insertion/σ-bond metathesis catalytic cycle of an in situ formed "MgH2 " active species.
Collapse
Affiliation(s)
- Lea Fohlmeister
- School of Chemistry, Monash University, 17 Rainforest Walk, Melbourne, Victoria, 3800, Australia
| | - Andreas Stasch
- School of Chemistry, Monash University, 17 Rainforest Walk, Melbourne, Victoria, 3800, Australia. .,School of Chemistry, University of St Andrews, North Haugh, St. Andrews, KY16 9ST, UK.
| |
Collapse
|
45
|
Rauch M, Rong Y, Sattler W, Parkin G. Synthesis of a terminal zinc hydride compound, [TpBut,Me]ZnH, from a hydroxide derivative, [TpBut,Me]ZnOH: Interconversions with the fluoride complex, [TpBut,Me]ZnF. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Kreider-Mueller A, Quinlivan PJ, Rauch M, Owen JS, Parkin G. Synthesis, structure and reactivity of [TmBut]ZnH, a monomeric terminal zinc hydride compound in a sulfur-rich coordination environment: access to a heterobimetallic compound. Chem Commun (Camb) 2016; 52:2358-61. [DOI: 10.1039/c5cc08915h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The zinc hydride complex, [TmBut]ZnH, undergoes insertion of CO2 and facile protolytic cleavage, of which the latter provides access to heterobimetallic [TmBut]ZnMo(CO)3Cp.
Collapse
Affiliation(s)
| | | | - Michael Rauch
- Department of Chemistry
- Columbia University
- New York
- USA
| | | | - Gerard Parkin
- Department of Chemistry
- Columbia University
- New York
- USA
| |
Collapse
|
47
|
Dawkins MJC, Middleton E, Kefalidis CE, Dange D, Juckel MM, Maron L, Jones C. Two-coordinate terminal zinc hydride complexes: synthesis, structure and preliminary reactivity studies. Chem Commun (Camb) 2016; 52:10490-2. [DOI: 10.1039/c6cc05445e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The first examples of essentially two-coordinate, monomeric zinc hydride complexes have been stabilised by incorporation of “super bulky” amide ligands. Crystallographic studies show them to possess near linear N–Zn–H fragments (see picture).
Collapse
Affiliation(s)
| | - Ewart Middleton
- Monash Centre for Catalysis
- School of Chemistry
- Monash University
- Australia
| | | | - Deepak Dange
- Monash Centre for Catalysis
- School of Chemistry
- Monash University
- Australia
| | - Martin M. Juckel
- Monash Centre for Catalysis
- School of Chemistry
- Monash University
- Australia
| | | | - Cameron Jones
- Monash Centre for Catalysis
- School of Chemistry
- Monash University
- Australia
| |
Collapse
|
48
|
Ghosh C, Mukhopadhyay TK, Flores M, Groy TL, Trovitch RJ. A Pentacoordinate Mn(II) Precatalyst That Exhibits Notable Aldehyde and Ketone Hydrosilylation Turnover Frequencies. Inorg Chem 2015; 54:10398-406. [DOI: 10.1021/acs.inorgchem.5b01825] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chandrani Ghosh
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Tufan K. Mukhopadhyay
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Marco Flores
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas L. Groy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryan J. Trovitch
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|