1
|
Moura NMM, Serra VV, Bastos A, Biazotto JC, Castro KADF, Faustino MAF, Lodeiro C, da Silva RS, Neves MDGPMS. New Bis-Cyclometalated Iridium(III) Complexes with β-Substituted Porphyrin-Arylbipyridine as the Ancillary Ligand: Electrochemical and Photophysical Insights. Int J Mol Sci 2022; 23:ijms23147606. [PMID: 35886956 PMCID: PMC9319630 DOI: 10.3390/ijms23147606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
An efficient synthetic access to new cationic porphyrin-bipyridine iridium(III) bis-cyclometalated complexes was developed. These porphyrins bearing arylbipyridine moieties at β-pyrrolic positions coordinated with iridium(III), and the corresponding Zn(II) porphyrin complexes were spectroscopically, electrochemically, and electronically characterized. The features displayed by the new cyclometalated porphyrin-bipyridine iridium(III) complexes, namely photoinduced electron transfer process (PET), and a remarkable efficiency to generate 1O2, allowing us to envisage new challenges and opportunities for their applications in several fields, such as photo(catalysis) and photodynamic therapies.
Collapse
Affiliation(s)
- Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.A.F.F.); (M.d.G.P.M.S.N.)
- Correspondence: (N.M.M.M.); (V.V.S.); Tel.: +351-234-370-710 (N.M.M.M.)
| | - Vanda Vaz Serra
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Correspondence: (N.M.M.M.); (V.V.S.); Tel.: +351-234-370-710 (N.M.M.M.)
| | - Alexandre Bastos
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Juliana C. Biazotto
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 14040-903, Brazil; (J.C.B.); (K.A.D.F.C.); (R.S.d.S.)
| | - Kelly A. D. F. Castro
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 14040-903, Brazil; (J.C.B.); (K.A.D.F.C.); (R.S.d.S.)
| | - Maria Amparo F. Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.A.F.F.); (M.d.G.P.M.S.N.)
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Caparica, Portugal;
- ProteoMass Scientific Society, Madan Park, Rua dos Inventores, 2825-182 Caparica, Portugal
| | - Roberto S. da Silva
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 14040-903, Brazil; (J.C.B.); (K.A.D.F.C.); (R.S.d.S.)
| | - Maria da Graça P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.A.F.F.); (M.d.G.P.M.S.N.)
| |
Collapse
|
2
|
So SC, Cheung WM, Chiu WH, de Vere-Tucker M, Sung HHY, Williams ID, Leung WH. Iridium porphyrin complexes with μ-nitrido, hydroxo, hydrosulfido and alkynyl ligands. Dalton Trans 2019; 48:8340-8349. [PMID: 31112175 DOI: 10.1039/c9dt00244h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Iridium porphyrin complexes containing μ-nitrido, hydroxo, hydrosulfido, and alkynyl ligands have been synthesized and structurally characterized, and their oxidation has been studied. The alkyl-IrIII porphyrin complex [Ir(tpp)R] (tpp2- = 5,10,15,20-tetraphenylporphyrin dianion; R = C8H13; 1) was synthesized by reaction of [Ir(cod)Cl]2 (cod = 1,5-cyclooctadiene) with H2tpp in refluxing monoethylene glycol. Treatment of 1 with PPh3 and [(LOEt)Ru(N)Cl2] (LOEt- = [(η5-C5H5)Co{P(O)(OEt)2}3]-) gave [Ir(tpp)(R)(PPh3)] (2) and the μ-nitrido complex [R(tpp)Ir(μ-N)RuCl2(LOEt)] (3), respectively. The cyclic voltammogram of 3 exhibited a reversible oxidation couple at 0.44 V versus Fc+/0 (Fc = ferrocene). The oxidation of 3 with [(4-BrC6H4)3N](SbCl6) resulted in Ir-C bond homolysis and formation of the chloride complex [Cl(tpp)Ir(μ-N)RuCl2(LOEt)] (4). The short Ir-N(nitrido) bond distances in 3 [1.944(3) Å] and 4 [1.831(4) Å] are indicative of multiple bond character and thus these two μ-nitrido complexes can be described by the two resonance forms: IrIII-N[triple bond, length as m-dash]RuVI and IrV[double bond, length as m-dash]N[double bond, length as m-dash]RuIV. Similarly, the oxidation of 2 with [(4-BrC6H4)3N](SbCl6) yielded [Ir(tpp)Cl(PPh3)] (5). Chloride abstraction of 5 with TlPF6 in tetrahydrofuran (thf) afforded [Ir(tpp)(PPh3)(thf)](PF6) (6) that reacted with CsOH·H2O and Li2S to give the hydroxo [Ir(tpp)(OH)(PPh3)] (7) and hydrosulfido [Ir(tpp)(PPh3)(SH)] (8) complexes, respectively. Treatment of 6 with phenylacetylene in the presence of CuI and Et3N yielded the bimetallic complex [Ir(tpp)(PPh3)(μ-η1:η2-C[triple bond, length as m-dash]CPh)(CuI)] (9), whereas the transmetallation of 6 with LiC[triple bond, length as m-dash]CPh afforded the mononuclear alkynyl complex [Ir(tpp)(PPh3)(C[triple bond, length as m-dash]CPh)] (10). The electrochemistry of the Ir porphyrin complexes has been studied using cyclic voltammetry. On the basis of the measured redox potentials of [Ir(tpp)(PPh3)X], the ability of X- to stabilize the IrIV state is ranked in the order: R- > PhC[triple bond, length as m-dash]C- > Cl- ∼ OH-. Oxidation of 8 and 9 with [(4-BrC6H4)3N](SbCl6) led to isolation of 5 and [Ir(tpp)(PPh3)(H2O)]+, respectively. The crystal structures of complexes 3, 4, and 7-10 have been determined.
Collapse
Affiliation(s)
- Shiu-Chun So
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
3
|
Chen C, Zuo H, Chan KS. Catalytic hydrodebromination of aryl bromides by cobalt tetra-butyl porphyrin complexes with EtOH. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
Yang W, Chen C, Chan KS. Hydrodebromination of allylic and benzylic bromides with water catalyzed by a rhodium porphyrin complex. Dalton Trans 2018; 47:12879-12883. [PMID: 30168570 DOI: 10.1039/c8dt02168f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrodebromination of allylic and benzylic bromides was successfully achieved by a rhodium porphyrin complex catalyst using water as the hydrogen source without a sacrificial reductant. Mechanistic investigations suggest that bromine atom abstraction via a rhodium porphyrin metalloradical operates to give the rhodium porphyrin alkyl species and the subsequent hydrolysis of the rhodium porphyrin alkyl species to a hydrocarbon product is a key step to harness the hydrogen from water.
Collapse
Affiliation(s)
- Wu Yang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China.
| | | | | |
Collapse
|
5
|
Thompson SJ, Brennan MR, Lee SY, Dong G. Synthesis and applications of rhodium porphyrin complexes. Chem Soc Rev 2018; 47:929-981. [DOI: 10.1039/c7cs00582b] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A review on rhodium porphyrin chemistry, ranging from synthesis and properties to reactivity and application.
Collapse
Affiliation(s)
| | | | - Siu Yin Lee
- Department of Chemistry, University of Chicago
- Chicago
- USA
| | - Guangbin Dong
- Department of Chemistry, University of Chicago
- Chicago
- USA
| |
Collapse
|
6
|
To CT, Yang W, Chan KS. Porphyrins and Phthalocyanines Catalyzed Direct CH Arylation. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Yang W, Zhang H, Li L, Tam CM, Feng S, Wong KL, Lai WY, Ng SH, Chen C, Chan KS. Base-Promoted, Aerobic, and Regioselective Carbon–Hydrogen Bond Activation of Thiophene with Group 9 Metalloporphyrins. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wu Yang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin,
New Territories, Hong Kong, People’s Republic of China
| | - Haojie Zhang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin,
New Territories, Hong Kong, People’s Republic of China
| | - Liuxiao Li
- Department of Chemistry, The Chinese University of Hong Kong, Shatin,
New Territories, Hong Kong, People’s Republic of China
| | - Chun Meng Tam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin,
New Territories, Hong Kong, People’s Republic of China
| | - Shiyu Feng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin,
New Territories, Hong Kong, People’s Republic of China
| | - Ka Lai Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin,
New Territories, Hong Kong, People’s Republic of China
| | - Wai Yan Lai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin,
New Territories, Hong Kong, People’s Republic of China
| | - Sheung Hei Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin,
New Territories, Hong Kong, People’s Republic of China
| | - Chen Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin,
New Territories, Hong Kong, People’s Republic of China
| | - Kin Shing Chan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin,
New Territories, Hong Kong, People’s Republic of China
| |
Collapse
|