1
|
Borys AM, Vedani L, Hevia E. The coordination of alkali-metal nickelates to organic π-systems: synthetic, structural and spectroscopic insights. Dalton Trans 2024; 53:8382-8390. [PMID: 38680126 DOI: 10.1039/d4dt00889h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Low-valent nickelates have recently been shown to be key intermediates in challenging cross-coupling reactions using aryl ethers as electrophiles. Key for the success of these transformations is the activation of the substrate through π-coordination to the nickelate intermediate, however there is still limited knowledge about the fundamental structure and coordination chemistry of these heterobimetallic complexes. Herein, we report the synthesis, structures, and spectroscopic analysis of a diverse family of alkali-metal nickelates derived from phenyl-alkali-metal reagents and Ni(ttt-CDT), where ttt-CDT = trans,trans,trans-1,5,9-cyclododecatriene. The co-complexation of PhLi with Ni(ttt-CDT) was found to yield 1 : 1, 2 : 1 or 4 : 2 lithium nickelates depending on the stoichiometry and reaction conditions employed. The high lability of the ttt-CDT ligand enables facile ligand exchange with an assorted series of organic π-acceptors, ranging from polyaromatic hydrocarbons to ketones, imines and nitriles. For anthracene and phenanthrene, a homologous series of Li, Na and K nickelates could be obtained, which lead to different structural motifs or degrees of aggregation in the solid-state spanning solvated monomers to complex polymeric arrangements. For π-extended systems such as perylene or coronene, competing single-electron-transfer to give the corresponding radical anions was observed, illustrating the highly reducing nature of the alkali-metal nickelates. X-ray crystallographic analysis and NMR spectroscopy of the phenyl-alkali-metal nickelates reveal extreme back-bonding from Ni(0) to the organic π-acceptors due to strong σ-donation from the carbanionic ligands.
Collapse
Affiliation(s)
- Andryj M Borys
- Departement für Chemie, Biochemie und Pharmacie, Universität Bern, 3012 Bern, Switzerland.
| | - Luca Vedani
- Departement für Chemie, Biochemie und Pharmacie, Universität Bern, 3012 Bern, Switzerland.
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmacie, Universität Bern, 3012 Bern, Switzerland.
| |
Collapse
|
2
|
Borys AM, Vedani L, Hevia E. Stoichiometric and Catalytic Lithium Nickelate-Mediated C-F Bond Alkynylation of Fluoroarenes. J Am Chem Soc 2024; 146:10199-10205. [PMID: 38545862 DOI: 10.1021/jacs.4c02606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Low-valent nickelates have recently been shown to be key intermediates that facilitate challenging cross-coupling reactions under mild conditions. Expanding the synthetic potential of these heterobimetallic complexes, herein we report the success of trilithium nickelate Li3(TMEDA)3Ni(C≡C-Ph)3 in promoting stoichiometric C-F activation of assorted aryl fluorides furnishing novel mixed Li/Ni(0) or Li/Ni(II) species depending on the substrate and conditions employed. These stoichiometric successes can be upgraded to catalytic regimes to enable the atom-efficient alkynylation of aryl fluorides and polyfluoroarenes with lithium acetylides and precatalyst Ni(COD)2, which operates without the intervention of external ligands, Cu cocatalysts, or additives.
Collapse
Affiliation(s)
- Andryj M Borys
- Departement für Chemie, Biochemie und Pharmacie, Universität Bern, 3012 Bern, Switzerland
| | - Luca Vedani
- Departement für Chemie, Biochemie und Pharmacie, Universität Bern, 3012 Bern, Switzerland
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmacie, Universität Bern, 3012 Bern, Switzerland
| |
Collapse
|
3
|
Pavun A, Niess R, Scheibel LA, Seidl M, Hohloch S. A mesoionic carbene stabilized nickel(II) hydroxide complex: a facile precursor for C-H activation chemistry. Dalton Trans 2024; 53:2749-2761. [PMID: 38226674 DOI: 10.1039/d3dt03746k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
We report the synthesis of a new nickel(II) hydroxide complex 2 supported by a rigid, tridentate triazolylidene-carbazolid ligand. The complex can be accessed in high yields following a simple and stepwise extraction protocol using dichloromethane and aqueous ammonium chloride followed by aqeous sodium hydroxide solution. We found that complex 2 is highly basic, undergoing various deprotonation/desilylation reactions with E-H and C-H acidic and silylated compounds. In this context we synthesized a variety of novel, functionalized nickel(II) complexes with trimethylsilylolate (3), trityl sulfide (4), tosyl amide (5), azido (6), pyridine (7), acetylide (8, 9), fluoroarene (10 & 11) and enolate (12) ligands. We furthermore found that 2 reacts with malonic acid dimethyl ester in a knoevennagel-type condensation reaction, giving access to a new enolate ligand in complex 13, consisting of two malonic acid units. Furthermore, complex 2 reacts with acetonitrile to form the cyanido complex 14. The formation of complexes 13 and 14 is particularly interesting, as they underline the potential of complex 2 in both C-C bond formation and cleavage reactions.
Collapse
Affiliation(s)
- Anna Pavun
- Universität Innsbruck, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Raffael Niess
- Universität Innsbruck, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Lucas A Scheibel
- Universität Innsbruck, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Michael Seidl
- Universität Innsbruck, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Stephan Hohloch
- Universität Innsbruck, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
4
|
Gupta R, Kumar A, Mani G. Dipyrromethane-diphosphine: the effect of meso substituents on the formation of nickel complexes and on their performance in the transfer hydrogenation of ketones. Dalton Trans 2023. [PMID: 37999651 DOI: 10.1039/d3dt03163b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Three dipyrromethane-diphosphine ligands containing phenyl (L1H2), ethyl (L2H2) and cyclohexyl (L3H2) groups at their meso positions and their nickel complexes were synthesized and structurally characterized. Treatment of Ph2C(C4H3N)2-1,9-(CH2PPh2)2 (L1H2) with [NiCl2(DME)] gave complex [NiCl2(κ2-P,P-L1H2)] 2a. Conversely, the analogous reactions of L2H2 and L3H2 with [NiCl2(DME)] showed a mixture of products containing both a pyrrolide nitrogen coordinated complex of type [Ni(κ4-P,N,N,P-L)] 3 without an exogenous base and a chelated complex of type 2a. In addition, all three ligands react with [NiCl2(DME)] in the presence of a strong base to give a complex of type 3. Furthermore, a novel binuclear Ni(0) complex bearing L1H2 was characterized by X-ray crystallography. Both complexes 2a and 3 (0.5 mol% of loading) catalyze the transfer hydrogenation of a series of aromatic and aliphatic ketones (20 substrates) to their corresponding secondary alcohols using iPrOH as a hydrogen source in the presence of KOH at 100 °C in 6 h. The kinetic trace of the catalytic reaction shows that the meso-phenyl substituted diphosphine coordinated nickel complexes perform better than the other two ligand coordinated nickel complexes.
Collapse
Affiliation(s)
- Rohit Gupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721 302 India.
| | - Ashok Kumar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721 302 India.
| | - Ganesan Mani
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721 302 India.
| |
Collapse
|
5
|
Geer AM, Tejel C. Organo-phosphanide and -phosphinidene complexes of Groups 8–11. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Guo Z, Lei X. New Nickel-Based Catalytic System with Pincer Pyrrole-Functionalized N-Heterocyclic Carbene as Ligand for Suzuki-Miyaura Cross-Coupling Reactions. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Usui R, Sunada Y. Triangular Palladium Cluster from Activation of the Si-Si Bond in a Disilane with Phosphine Pendants. Inorg Chem 2021; 60:15101-15105. [PMID: 34558907 DOI: 10.1021/acs.inorgchem.1c02043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A disilane that contains two diphenylphosphino moieties, (Ph2PCH2)Ph2Si-SiPh2(CH2PPh), was readily synthesized from the reaction of ClPh2Si-SiPh2Cl with (tmeda)Li(CH2PPh2). Treatment of the thus-obtained disilane with the palladium(0) precursor [Pd(CNtBu)2]3 led to the exclusive formation of a trinuclear palladium cluster in which three palladium atoms are arranged in a triangular fashion. Single-crystal X-ray diffraction analysis of the obtained triangular cluster revealed that novel silylphosphido chelating ligands were formed via a skeletal rearrangement of the ligand framework.
Collapse
Affiliation(s)
| | - Yusuke Sunada
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 Japan
| |
Collapse
|
8
|
|
9
|
Sabater S, Schmidt D, Schmidt H(S, Kuntze‐Fechner MW, Zell T, Isaac CJ, Rajabi NA, Grieve H, Blackaby WJM, Lowe JP, Macgregor SA, Mahon MF, Radius U, Whittlesey MK. [Ni(NHC) 2 ] as a Scaffold for Structurally Characterized trans [H-Ni-PR 2 ] and trans [R 2 P-Ni-PR 2 ] Complexes. Chemistry 2021; 27:13221-13234. [PMID: 34190374 PMCID: PMC8518396 DOI: 10.1002/chem.202101484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 11/06/2022]
Abstract
The addition of PPh2 H, PPhMeH, PPhH2 , P(para-Tol)H2 , PMesH2 and PH3 to the two-coordinate Ni0 N-heterocyclic carbene species [Ni(NHC)2 ] (NHC=IiPr2 , IMe4 , IEt2 Me2 ) affords a series of mononuclear, terminal phosphido nickel complexes. Structural characterisation of nine of these compounds shows that they have unusual trans [H-Ni-PR2 ] or novel trans [R2 P-Ni-PR2 ] geometries. The bis-phosphido complexes are more accessible when smaller NHCs (IMe4 >IEt2 Me2 >IiPr2 ) and phosphines are employed. P-P activation of the diphosphines R2 P-PR2 (R2 =Ph2 , PhMe) provides an alternative route to some of the [Ni(NHC)2 (PR2 )2 ] complexes. DFT calculations capture these trends with P-H bond activation proceeding from unconventional phosphine adducts in which the H substituent bridges the Ni-P bond. P-P bond activation from [Ni(NHC)2 (Ph2 P-PPh2 )] adducts proceeds with computed barriers below 10 kcal mol-1 . The ability of the [Ni(NHC)2 ] moiety to afford isolable terminal phosphido products reflects the stability of the Ni-NHC bond that prevents ligand dissociation and onward reaction.
Collapse
Affiliation(s)
- Sara Sabater
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUK
| | - David Schmidt
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | | | | | - Thomas Zell
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Connie J. Isaac
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUK
| | - Nasir A. Rajabi
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Harry Grieve
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUK
| | | | - John P. Lowe
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUK
| | | | - Mary F. Mahon
- Department of ChemistryUniversity of Bath Claverton DownBathBA2 7AYUK
| | - Udo Radius
- Institut für Anorganische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | | |
Collapse
|
10
|
|
11
|
Lee K, Moore CE, Thomas CM. Synthesis of Ni(II) Complexes Supported by Tetradentate Mixed-Donor Bis(amido)/Phosphine/Phosphido Ligands by Phosphine Substituent Elimination. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyounghoon Lee
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Curtis E. Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christine M. Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Berkefeld A, Reimann M, Hörner G, Kaupp M, Schubert H. C–P vs C–H Bond Cleavage of Triphenylphosphine at Platinum(0): Mechanism of Formation, Reactivity, Redox Chemistry, and NMR Chemical Shift Calculations of a μ-Phosphanido Diplatinum(II) Platform. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andreas Berkefeld
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Marc Reimann
- Institut für Chemie, Theoretische Chemie − Quantenchemie, TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Gerald Hörner
- Anorganische Chemie IV, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie − Quantenchemie, TU Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Hartmut Schubert
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
13
|
Werncke CG, Müller I. The ambiguous behaviour of diphosphines towards the quasilinear iron(i) complex [Fe(N(SiMe3)2)2]− – between inertness, P–C bond cleavage and C–C double bond isomerisation. Chem Commun (Camb) 2020; 56:2268-2271. [DOI: 10.1039/c9cc08968c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A quasilinear iron(i) complex facilitates C–C bond isomerisation or P-aryl bond cleavage of diphosphines but is otherwise inert to simple phosphine coordination.
Collapse
Affiliation(s)
| | - Igor Müller
- Fachbereich Chemie
- Philipps-University Marburg
- D-35043 Marburg
- Germany
| |
Collapse
|
14
|
Duczynski J, Sobolev AN, Moggach SA, Dorta R, Stewart SG. The Synthesis and Catalytic Activity of New Mixed NHC-Phosphite Nickel(0) Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jeremy Duczynski
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Perth, WA 6009, Australia
| | - Alexandre N. Sobolev
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Perth, WA 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia
| | - Stephen A. Moggach
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Perth, WA 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia
| | - Reto Dorta
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Perth, WA 6009, Australia
| | - Scott G. Stewart
- School of Molecular Sciences, The University of Western Australia (M310), 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
15
|
Wang Z, Yu SL, Wei ZB, An DL, Li YY, Gao JX. Synthesis, characterization of novel Nickel(II) complexes with PxNy-Type ligands and their application in reduction of ketones. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Lei C, Zhu D, Tangcueco VIIIT, Zhou JS. Arylation of Aldehydes To Directly Form Ketones via Tandem Nickel Catalysis. Org Lett 2019; 21:5817-5822. [DOI: 10.1021/acs.orglett.9b01782] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Daoyong Zhu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Vicente III Tiu Tangcueco
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
17
|
Berthel JHJ, Tendera L, Kuntze-Fechner MW, Kuehn L, Radius U. NHC-Stabilized Nickel Olefin, Dialkyl, and Dicyanido Complexes. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900484] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Johannes H. J. Berthel
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Lukas Tendera
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | | | - Laura Kuehn
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Udo Radius
- Institut für Anorganische Chemie; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
18
|
Fujimoto H, Kusano M, Kodama T, Tobisu M. Cyclization of Bisphosphines to Phosphacycles via the Cleavage of Two Carbon–Phosphorus Bonds by Nickel Catalysis. Org Lett 2019; 21:4177-4181. [DOI: 10.1021/acs.orglett.9b01355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hayato Fujimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Momoka Kusano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuya Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Lee YH, Morandi B. Transition metal-mediated metathesis between P–C and M–C bonds: Beyond a side reaction. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Wang Z, Li X, Xie S, Zheng T, Sun H. Transfer hydrogenation of ketones catalyzed by nickel complexes bearing an NHC [CNN] pincer ligand. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zijing Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of EducationShandong University Shanda Nanlu 27 Jinan 250100 China
- School of Biomedical and Chemical EngineeringLiaoning Institute of Science and Technology Benxi 117004 China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of EducationShandong University Shanda Nanlu 27 Jinan 250100 China
| | - Shangqing Xie
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of EducationShandong University Shanda Nanlu 27 Jinan 250100 China
| | - Tingting Zheng
- Department of ChemistryCapital Normal University 100037 Beijing China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of EducationShandong University Shanda Nanlu 27 Jinan 250100 China
| |
Collapse
|
21
|
Danopoulos AA, Simler T, Braunstein P. N-Heterocyclic Carbene Complexes of Copper, Nickel, and Cobalt. Chem Rev 2019; 119:3730-3961. [PMID: 30843688 DOI: 10.1021/acs.chemrev.8b00505] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The emergence of N-heterocyclic carbenes as ligands across the Periodic Table had an impact on various aspects of the coordination, organometallic, and catalytic chemistry of the 3d metals, including Cu, Ni, and Co, both from the fundamental viewpoint but also in applications, including catalysis, photophysics, bioorganometallic chemistry, materials, etc. In this review, the emergence, development, and state of the art in these three areas are described in detail.
Collapse
Affiliation(s)
- Andreas A Danopoulos
- Laboratory of Inorganic Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis Zografou , Athens GR 15771 , Greece.,Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| | - Thomas Simler
- Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| | - Pierre Braunstein
- Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| |
Collapse
|
22
|
Blackaby WJM, Neale SE, Isaac CJ, Sabater S, Macgregor SA, Whittlesey MK. N‐Heterocyclic Carbene Non‐Innocence in the Catalytic Hydrophosphination of Alkynes. ChemCatChem 2019. [DOI: 10.1002/cctc.201900220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Samuel E. Neale
- Institute of Chemical SciencesHeriot-Watt University Edinburgh EH14 4AS UK
| | - Connie J. Isaac
- Department of ChemistryUniversity of Bath Claverton Down, Bath BA2 7AY UK
| | - Sara Sabater
- Department of ChemistryUniversity of Bath Claverton Down, Bath BA2 7AY UK
| | | | | |
Collapse
|
23
|
Abstract
The catalytic activity of nickel complexes in hydrophosphination involving secondary phosphines is not a commonly studied transformation. Beyond a small number of stand-out examples, many reports in the literature focus on the use of simple nickel salts. β-Diketiminates have been proven to be incredibly effective ligands for catalysis using a range of metal centers. This synthetic study investigates the catalytic ability of a Ni(II) β-diketiminate complex in the hydrophosphination of alkenes and alkynes, with a serendipitous discovery of its ability to effect alkyne cyclotrimerization and phosphine dehydrocoupling.
Collapse
|
24
|
Roach TV, Schmitz ML, Leach VA, Miller MD, Chan BC, Kalman SE. Nickel complexes of primary amido-functionalized N-heterocyclic carbene ligands: Synthesis, characterization, and base-free transfer hydrogenation. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Hall JW, Unson DML, Brunel P, Collins LR, Cybulski MK, Mahon MF, Whittlesey MK. Copper-NHC-Mediated Semihydrogenation and Hydroboration of Alkynes: Enhanced Catalytic Activity Using Ring-Expanded Carbenes. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00467] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonathan W. Hall
- Department of Chemistry, University of Bath, Claverton
Down, Bath BA2 7AY, United Kingdom
| | - Darcy M. L. Unson
- Department of Chemistry, University of Bath, Claverton
Down, Bath BA2 7AY, United Kingdom
| | - Paul Brunel
- Department of Chemistry, University of Bath, Claverton
Down, Bath BA2 7AY, United Kingdom
| | - Lee R. Collins
- Department of Chemistry, University of Bath, Claverton
Down, Bath BA2 7AY, United Kingdom
| | - Mateusz K. Cybulski
- Department of Chemistry, University of Bath, Claverton
Down, Bath BA2 7AY, United Kingdom
| | - Mary F. Mahon
- Department of Chemistry, University of Bath, Claverton
Down, Bath BA2 7AY, United Kingdom
| | - Michael K. Whittlesey
- Department of Chemistry, University of Bath, Claverton
Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
26
|
Li Y, Lei M, Yuan W, Meggers E, Gong L. An N-heterocyclic carbene iridium catalyst with metal-centered chirality for enantioselective transfer hydrogenation of imines. Chem Commun (Camb) 2018; 53:8089-8092. [PMID: 28677698 DOI: 10.1039/c7cc04691j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A cyclometalating N-heterocyclic carbene iridium complex featuring metal-centered chirality was designed and used for the asymmetric transfer hydrogenation (ATH) of imines. Four strongly σ-donating carbon-based substituents (2 carbenes and 2 phenyl moieties), a chirality transfer directly from the stereogenic metal center to the C[double bond, length as m-dash]N bond of substrates, as well as a restriction of catalyst deactivation by steric demanding substituents, render the new complex one of the most efficient catalysts for ATH of cyclic N-sulfonylimines (down to 0.01 mol% cat., 24 examples, 94-98% ee).
Collapse
Affiliation(s)
- Yanjun Li
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.
| | | | | | | | | |
Collapse
|
27
|
Qin HL, Leng J, Zhang W, Kantchev EAB. DFT modelling of a diphosphane - N-heterocyclic carbene-Rh(i) pincer complex rearrangement: a computational evaluation of the electronic effects in C-P bond activation. Dalton Trans 2018; 47:2662-2669. [PMID: 29410986 DOI: 10.1039/c7dt04759b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DFT calculations confirmed that the rearrangement of a PCP-Rh-H pincer to a CCP-Rh-phosphane pincer occured by C-P oxidative addition (ΔG‡ = 29.5 kcal mol-1, rate-determining step), followed by P-H reductive elimination (ΔG‡ = 4.8 kcal mol-1). The oxidative addition proceeded via a 3-centered transition state and is accelerated by electron-withdrawing substituents p- to the reacting C-P bond, resulting in a reaction constant (ρ) of 2.12 for ΔG‡ and 2.76 for ΔH‡ in a Hammett-type linear free energy relationship. AIM wavefunction analyses indicated a decrease in the negative charge on the carbon bonded to Rh with a concomitant increase in the positive charge on the latter. The electronic density at the Rh-P bond critical point and the atomic charge on Rh correlate well with the Hammett constants (σ) of the p-substituents. The replacement of the Rh-bound hydride with other anions (CH3, Ph, t-Bu, OH, F, Cl, and CN) results in a decrease in the OA barrier only for CH3, which is in accordance with the experimental results. The reductive elimination occurs via a 3-centered (Rh, H, P) transition state, which adopts a conformation wherein the steric clash between the i-Pr groups is minimized, followed by recomplexation of Rh and the newly formed (i-Pr)2PH by a conformational twist around the Rh-P axis.
Collapse
Affiliation(s)
- H-L Qin
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, Hubei, People's Republic of China.
| | | | | | | |
Collapse
|
28
|
Ellul CE, Lowe JP, Mahon MF, Raithby PR, Whittlesey MK. [Ru3(6-NHC)(CO)10]: synthesis, characterisation and reactivity of rare 46-electron tri-ruthenium clusters. Dalton Trans 2018; 47:4518-4523. [DOI: 10.1039/c8dt00189h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The room temperature reaction of 6-membered ring N-heterocyclic carbenes with [Ru3(CO)12] affords [Ru3(6-NHC)(CO)10], rare examples of coordinatively unsaturated, 46-electron tri-ruthenium clusters. Upon mild heating in the presence of C5H5N, H2 or PPh3, these compounds lose carbene.
Collapse
Affiliation(s)
| | - John P. Lowe
- Department of Chemistry
- University of Bath
- Claverton Down
- UK
| | - Mary F. Mahon
- Department of Chemistry
- University of Bath
- Claverton Down
- UK
| | | | | |
Collapse
|
29
|
Blackaby WJM, Sabater S, Poulten RC, Page MJ, Folli A, Krewald V, Mahon MF, Murphy DM, Richards E, Whittlesey MK. Mono- and dinuclear Ni(i) products formed upon bromide abstraction from the Ni(i) ring-expanded NHC complex [Ni(6-Mes)(PPh3)Br]. Dalton Trans 2018; 47:769-782. [DOI: 10.1039/c7dt04187j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
New T- and Y-shaped Ni(i) complexes are reported and analysed by DFT and EPR.
Collapse
Affiliation(s)
| | - Sara Sabater
- Department of Chemistry
- University of Bath
- Claverton Down
- UK
| | | | | | - Andrea Folli
- School of Chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - Vera Krewald
- Department of Chemistry
- University of Bath
- Claverton Down
- UK
| | - Mary F. Mahon
- Department of Chemistry
- University of Bath
- Claverton Down
- UK
| | | | - Emma Richards
- School of Chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| | | |
Collapse
|
30
|
Kessler JA, Iluc VM. NI(ii) phosphine and phosphide complexes supported by a PNP-pyrrole pincer ligand. Dalton Trans 2017; 46:12125-12131. [PMID: 28869266 DOI: 10.1039/c7dt02784b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction between [(PNpyrP)NiCl] (1, PNpyrP = 2,5-bis((di-iso-propylphosphino)-methyl)-1H-pyrrolide) and TlPF6 in the presence of a monodentate phosphine ligand led to cationic nickel phosphine and phosphite complexes, [(PNpyrP)Ni(PHPh2)][PF6] (2), [(PNpyrP)Ni(PMe3)][PF6] (3), and [(PNpyrP)Ni{P(OMe)3}][PF6] (4). Compound 2 can be deprotonated resulting in the generation of a terminal phosphido complex, [(PNpyrP)Ni(PPh2)] (5). When 3 is subjected to a base, a methyl proton of PMe3 is abstracted to afford [(PNpyrP)Ni(CH2PMe2)] (6), containing a methylene bridge between Ni and the external phosphine. Compounds 2-6 were characterized by single crystal X-ray diffraction in addition to multi-nuclear NMR spectroscopy and elemental analysis.
Collapse
Affiliation(s)
- Julie A Kessler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Vlad M Iluc
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|