1
|
Ren W, Sheng X, Shi Y. Pd-Catalyzed Regioselective Hydrocarboxylation of Alkyl Terminal Olefins with Oxalic Acid. Org Lett 2024; 26:6174-6178. [PMID: 39018357 DOI: 10.1021/acs.orglett.4c02009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
A Pd-catalyzed regioselective hydrocarboxylation of alkyl terminal olefins with oxalic acid is described. A wide variety of linear carboxylic acids can be readily obtained in good yields and high l/b (linear/branched) ratios with Pd2(dba)3 and (p-ClPh)3P under mild conditions. The reaction process is operationally simple and requires no handling of toxic CO. In addition, branched carboxylic acids can also be formed in good regioselectivities with PdCl2 and (2',6'-dimethoxy-[1,1'-biphenyl]-2-yl)diphenylphosphine (L1).
Collapse
Affiliation(s)
- Wenlong Ren
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Xujian Sheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Yian Shi
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Ren W, Sheng X, Fan C, Shi Y. Pd-Catalyzed Regiodivergent Hydrocarboxylation of Olefins with Oxalic Acid: A Remarkable Effect of the Counteranion on Regioselectivity. Org Lett 2023; 25:7786-7790. [PMID: 37856251 DOI: 10.1021/acs.orglett.3c02805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A regioselective Pd-catalyzed hydrocarboxylation of vinyl arenes with oxalic acid is described. A wide variety of either linear or branched carboxylic acids can be readily obtained with high regioselectivities under mild reaction conditions. The reaction process is operationally simple and requires no handling of toxic CO. Besides the ligand, the counteranion of the Pd catalyst system plays an important role in the regioselectivity.
Collapse
Affiliation(s)
- Wenlong Ren
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Xujian Sheng
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Chengcheng Fan
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| |
Collapse
|
3
|
Zhang Z, Li D, Xi C. CO 2-Promoted and Nickel-Catalyzed Direct Hydroallylation of Terminal Alkynes with Allylic Alcohols: Access to 1,4-Dienes. Org Lett 2023; 25:698-702. [PMID: 36695512 DOI: 10.1021/acs.orglett.3c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CO2-promoted and Ni-catalyzed direct hydroallylation of terminal alkynes with allylic alcohols has been achieved. Various 1,4-dienes could be synthesized in good yield with excellent Markovnikov selectivity for alkyl- and aryl-substituted terminal alkynes under mild reaction conditions. A gram-scale reaction gives considerable yield. Preliminary mechanistic studies support the reaction pathway through sequential carboxylation/allylnickelation/lithium bicarbonate nickelation/transmetalation in the hydroallylation of alkynes with allylic alcohols in the presence of CO2.
Collapse
Affiliation(s)
- Zeyu Zhang
- Ministry of Education (MOE) Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Danyun Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Chanjuan Xi
- Ministry of Education (MOE) Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
4
|
Zhao F, Han L, Liu T. Mechanistic insight into the ligand-controlled regioselective hydrocarboxylation of aryl olefins with palladium catalyst: a computational study. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
5
|
Efficient hydrocarboxylation of alkynes based on carbodiimide-regulated in situ CO generation from HCOOH: An alternative indirect utilization of CO2. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63848-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Hou L, Huang W, Wu X, Qu J, Chen Y. Nickel-Catalyzed Carbonylation of Cyclopropanol with Benzyl Bromide for Multisubstituted Cyclopentenone Synthesis. Org Lett 2022; 24:2699-2704. [PMID: 35389666 DOI: 10.1021/acs.orglett.2c00798] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein, we reported a Ni-catalyzed carbonylation of cyclopropanol with benzyl bromide to afford multisubstituted cyclopentenone under 1 atm of CO. The reaction proceeds through cascade carbonylation of benzyl bromides, followed by generation of nickel homoenolate from cyclopropanols via β-C elimination to afford 1,4-diketones, which undergoes intramolecular Aldol condensation to furnish highly substituted cyclopentenone derivatives in moderate to good yields. The reaction exhibits high functional group tolerance with broad substrate scope.
Collapse
Affiliation(s)
- Liting Hou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Yang P, Sun Y, Fu K, Zhang L, Yang G, Yue J, Ma Y, Zhou JS, Tang B. Enantioselective Synthesis of Chiral Carboxylic Acids from Alkynes and Formic Acid by Nickel‐Catalyzed Cascade Reactions: Facile Synthesis of Profens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Peng Yang
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Yaxin Sun
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Kaiyue Fu
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Li Zhang
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Guang Yang
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Jieyu Yue
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Yu Ma
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School, Room F312 2199 Lishui Road Nanshan District Shenzhen 518055 P. R. China
| | - Bo Tang
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
8
|
Yang P, Sun Y, Fu K, Zhang L, Yang G, Yue J, Ma Y, Zhou JS, Tang B. Enantioselective Synthesis of Chiral Carboxylic Acids from Alkynes and Formic Acid by Nickel-Catalyzed Cascade Reactions: Facile Synthesis of Profens. Angew Chem Int Ed Engl 2022; 61:e202111778. [PMID: 34676957 DOI: 10.1002/anie.202111778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Indexed: 12/20/2022]
Abstract
We report a stereoselective conversion of terminal alkynes to α-chiral carboxylic acids using a nickel-catalyzed domino hydrocarboxylation-transfer hydrogenation reaction. A simple nickel/BenzP* catalyst displayed high activity in both steps of regioselective hydrocarboxylation of alkynes and subsequent asymmetric transfer hydrogenation. The reaction was successfully applied in enantioselective preparation of three nonsteroidal anti-inflammatory profens (>90 % ees) and the chiral fragment of AZD2716.
Collapse
Affiliation(s)
- Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yaxin Sun
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Kaiyue Fu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Li Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Guang Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Jieyu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen, 518055, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
9
|
Hydrocarboxylation of alkynes with formic acid over multifunctional ligand modified Pd-catalyst with co-catalytic effect. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Zoller B, Zapp J, Huy PH. Rapid Organocatalytic Formation of Carbon Monoxide: Application towards Carbonylative Cross Couplings. Chemistry 2020; 26:9632-9638. [PMID: 32516509 PMCID: PMC7497008 DOI: 10.1002/chem.202002746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Indexed: 12/15/2022]
Abstract
Herein, the first organocatalytic method for the transformation of non‐derivatized formic acid into carbon monoxide (CO) is introduced. Formylpyrrolidine (FPyr) and trichlorotriazine (TCT), which is a cost‐efficient commodity chemical, enable this decarbonylation. Utilization of dimethylformamide (DMF) as solvent and catalyst even allows for a rapid CO generation at room temperature. Application towards four different carbonylative cross coupling protocols demonstrates the high synthetic utility and versatility of the new approach. Remarkably, this also comprehends a carbonylative Sonogashira reaction at room temperature employing intrinsically difficult electron‐deficient aryl iodides. Commercial 13C‐enriched formic acid facilitates the production of radiolabeled compounds as exemplified by the pharmaceutical Moclobemide. Finally, comparative experiments verified that the present method is highly superior to other protocols for the activation of carboxylic acids.
Collapse
Affiliation(s)
- Ben Zoller
- Organic Chemistry, Saarland University, P. O. Box 151150, 66041, Saarbrücken, Germany
| | - Josef Zapp
- Institute of Pharmaceutical Biology, Saarland University, Campus C 2.3, 66123, Saarbrücken, Germany
| | - Peter H Huy
- Organic Chemistry, Saarland University, P. O. Box 151150, 66041, Saarbrücken, Germany
| |
Collapse
|
11
|
Yuan M, Song Z, Badir SO, Molander GA, Gutierrez O. On the Nature of C(sp 3)-C(sp 2) Bond Formation in Nickel-Catalyzed Tertiary Radical Cross-Couplings: A Case Study of Ni/Photoredox Catalytic Cross-Coupling of Alkyl Radicals and Aryl Halides. J Am Chem Soc 2020; 142:7225-7234. [PMID: 32195579 PMCID: PMC7909746 DOI: 10.1021/jacs.0c02355] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The merger of photoredox and nickel catalysis has enabled the construction of quaternary centers. However, the mechanism, role of the ligand, and effect of the spin state for this transformation and related Ni-catalyzed cross-couplings involving tertiary alkyl radicals in combination with bipyridine and diketonate ligands remain unknown. Several mechanisms have been proposed, all invoking a key Ni(III) species prior to undergoing irreversible inner-sphere reductive elimination. In this work, we have used open-shell dispersion-corrected DFT calculations, quasi-classical dynamics calculations, and experiments to study in detail the mechanism of carbon-carbon bond formation in Ni bipyridine- and diketonate-based catalytic systems. These calculations revealed that access to high spin states (e.g., triplet spin state tetrahedral Ni(II) species) is critical for effective radical cross-coupling of tertiary alkyl radicals. Further, these calculations revealed a disparate mechanism for the C-C bond formation. Specifically, contrary to the neutral Ni-bipyridyl system, diketonate ligands lead directly to the corresponding tertiary radical cross-coupling products via an outer-sphere reductive elimination step via triplet spin state from the Ni(III) intermediates. Implications to related Ni-catalyzed radical cross-couplings and the design of new transformations are discussed.
Collapse
Affiliation(s)
- Mingbin Yuan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Zhihui Song
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Shorouk O. Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
12
|
Wu YN, Fu MC, Shang R, Fu Y. Nickel-catalyzed carboxylation of aryl iodides with lithium formate through catalytic CO recycling. Chem Commun (Camb) 2020; 56:4067-4069. [PMID: 32167124 DOI: 10.1039/d0cc01363c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A protocol for the Ni-catalyzed carboxylation of aryl iodides with formate has been developed with good functional group compatibility for the synthesis of a variety of aromatic carboxylic acids under mild conditions. The reaction tolerates other functionalities for cross-coupling, such as aryl bromide, aryl chloride, aryl tosylate, and aryl pinacol boronate. The reaction proceeds through a carbonylation process with in situ generated carbon monoxide in the presence of a catalytic amount of acetic anhydride and lithium formate, avoiding the use of gaseous CO. The strategy of CO recycling in catalytic amounts is critical for the success of the reaction.
Collapse
Affiliation(s)
- Ya-Nan Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China.
| | - Ming-Chen Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China.
| | - Rui Shang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China. and Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
13
|
Ren X, Lu Y, Lu G, Wang ZX. Density Functional Theory Mechanistic Study of Ni-Catalyzed Reductive Alkyne–Alkyne Cyclodimerization: Oxidative Cyclization versus Outer-Sphere Proton Transfer. Org Lett 2020; 22:2454-2459. [DOI: 10.1021/acs.orglett.0c00674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiaojian Ren
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Lu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Peng JB, Wu FP, Wu XF. First-Row Transition-Metal-Catalyzed Carbonylative Transformations of Carbon Electrophiles. Chem Rev 2018; 119:2090-2127. [DOI: 10.1021/acs.chemrev.8b00068] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jin-Bao Peng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Fu-Peng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
15
|
Zhang T, Zhang X, Chung LW. Computational Insights into the Reaction Mechanisms of Nickel-Catalyzed Hydrofunctionalizations and Nickel-Dependent Enzymes. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201700645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tonghuan Zhang
- Department of Chemistry; South University of Science and Technology of China (SUSTech); Shenzhen 518055 China
- Lab of Computational Chemistry and Drug Design; Key Laboratory of Chemical Genomics; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Xiaoyong Zhang
- Department of Chemistry; South University of Science and Technology of China (SUSTech); Shenzhen 518055 China
| | - Lung Wa Chung
- Department of Chemistry; South University of Science and Technology of China (SUSTech); Shenzhen 518055 China
| |
Collapse
|
16
|
Li J, Tian Z, Xu Z, Zhang S, Feng Y, Zhang L, Liu Z. Highly potent half-sandwich iridium and ruthenium complexes as lysosome-targeted imaging and anticancer agents. Dalton Trans 2018; 47:15772-15782. [DOI: 10.1039/c8dt02963f] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new class of half-sandwich Ir and Ru compounds containing P^P-chelating ligands can be developed as potential multifunctional theranostic platforms that combine bioimaging and anticancer capabilities.
Collapse
Affiliation(s)
- JuanJuan Li
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Zhenzhen Tian
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Zhishan Xu
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Shumiao Zhang
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Yaqian Feng
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Lingdong Zhang
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| |
Collapse
|