1
|
Pathak K, Mishra S, Bairagi S, Rajeshwaree B, Dutta A, Ghosh S. Thiolate-Bridged Heterodinuclear Manganese–Cobalt Complexes with Bridging Hydride Ligands. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kriti Pathak
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Shivankan Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Subhash Bairagi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - B. Rajeshwaree
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sundargopal Ghosh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
2
|
Yang X, Darensbourg MY. The roles of chalcogenides in O 2 protection of H 2ase active sites. Chem Sci 2020; 11:9366-9377. [PMID: 34094202 PMCID: PMC8161538 DOI: 10.1039/d0sc02584d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/11/2020] [Indexed: 12/31/2022] Open
Abstract
At some point, all HER (Hydrogen Evolution Reaction) catalysts, important in sustainable H2O splitting technology, will encounter O2 and O2-damage. The [NiFeSe]-H2ases and some of the [NiFeS]-H2ases, biocatalysts for reversible H2 production from protons and electrons, are exemplars of oxygen tolerant HER catalysts in nature. In the hydrogenase active sites oxygen damage may be extensive (irreversible) as it is for the [FeFe]-H2ase or moderate (reversible) for the [NiFe]-H2ases. The affinity of oxygen for sulfur, in [NiFeS]-H2ase, and selenium, in [NiFeSe]-H2ase, yielding oxygenated chalcogens results in maintenance of the core NiFe unit, and myriad observable but inactive states, which can be reductively repaired. In contrast, the [FeFe]-H2ase active site has less possibilities for chalcogen-oxygen uptake and a greater chance for O2-attack on iron. Exposure to O2 typically leads to irreversible damage. Despite the evidence of S/Se-oxygenation in the active sites of hydrogenases, there are limited reported synthetic models. This perspective will give an overview of the studies of O2 reactions with the hydrogenases and biomimetics with focus on our recent studies that compare sulfur and selenium containing synthetic analogues of the [NiFe]-H2ase active sites.
Collapse
Affiliation(s)
- Xuemei Yang
- Texas A&M University, Department of Chemistry College Station TX 77843 USA
| | | |
Collapse
|
3
|
Li Q, Zhang R, Ma C, Lü S, Mu C, Li Y. Synthesis, characterization, and some electrocatalytic properties of heteromultinuclear Fe
I
/Ru
II
Clusters. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5461] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Qian‐Li Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252059 P. R. China
| | - Ru‐Fen Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252059 P. R. China
| | - Chun‐Lin Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, College of Chemistry and Chemical EngineeringLiaocheng University Liaocheng 252059 P. R. China
| | - Shuang Lü
- School of PharmacyLiaocheng University Liaocheng 252059 China
| | - Chao Mu
- College of Chemistry and Environmental EngineeringSichuan University of Science & Engineering Zigong 643000 P. R. China
| | - Yu‐Long Li
- College of Chemistry and Environmental EngineeringSichuan University of Science & Engineering Zigong 643000 P. R. China
| |
Collapse
|
4
|
Yang X, Elrod LC, Reibenspies JH, Hall MB, Darensbourg MY. Oxygen uptake in complexes related to [NiFeS]- and [NiFeSe]-hydrogenase active sites. Chem Sci 2018; 10:1368-1373. [PMID: 30809352 PMCID: PMC6354737 DOI: 10.1039/c8sc04436h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/04/2018] [Indexed: 12/19/2022] Open
Abstract
The NiFe hydrogenase biomimetics are protected from oxygen invaders by sulfur and selenium castle guards.
A biomimetic study for S/Se oxygenation in Ni(μ-EPh)(μ-SN2)Fe, (E = S or Se; SN2 = Me-diazacycloheptane-CH2CH2S); Fe = (η5-C5H5)FeII(CO) complexes related to the oxygen-damaged active sites of [NiFeS]/[NiFeSe]-H2ases is described. Mono- and di-oxygenates (major and minor species, respectively) of the chalcogens result from exposure of the heterobimetallics to O2; one was isolated and structurally characterized to have Ni–O–SePh–Fe–S connectivity within a 5-membered ring. A compositionally analogous mono-oxy species was implicated by ν(CO) IR spectroscopy to be the corresponding Ni–O–SPh–Fe–S complex; treatment with O-abstraction agents such as P(o-tolyl)3 or PMe3 remediated the O damage. Computational studies (DFT) found that the lowest energy isomers of mono-oxygen derivatives of Ni(μ-EPh)(μ-SN2)Fe complexes were those with O attachment to Ni rather than Fe, a result consonant with experimental findings, but at odds with oxygenates found in oxygen-damaged [NiFeS]/[NiFeSe]-H2ase structures. A computer-generated model based on substituting –SMe for the N-CH2CH2S– sulfur donor of the N2S suggested that constraint within the chelate hindered O-atom uptake at that sulfur site.
Collapse
Affiliation(s)
- Xuemei Yang
- Texas A&M University , Department of Chemistry , College Station , TX 77843 , USA .
| | - Lindy C Elrod
- Texas A&M University , Department of Chemistry , College Station , TX 77843 , USA .
| | - Joseph H Reibenspies
- Texas A&M University , Department of Chemistry , College Station , TX 77843 , USA .
| | - Michael B Hall
- Texas A&M University , Department of Chemistry , College Station , TX 77843 , USA .
| | | |
Collapse
|
5
|
Takenaka M, Kikkawa M, Matsumoto T, Yatabe T, Ando T, Yoon KS, Ogo S. Oxidation of Guanosine Monophosphate with O 2 via a Ru-peroxo Complex in Water. Chem Asian J 2018; 13:3180-3184. [PMID: 30312012 DOI: 10.1002/asia.201801267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/23/2018] [Indexed: 11/07/2022]
Abstract
Oxidative damage of DNA by reactive oxygen species (ROS) is responsible for aging and cancer. Although many studies of DNA damage by ROS have been conducted, there have been no reports of the oxidation of RNA components, such as guanosine monophosphate, by metal-based species in water. Here, we report the first case of oxidation of guanosine monophosphate to 8-oxoguanosine monophosphate by a metal-based oxygen bound species, derived from O2 and in water.
Collapse
Affiliation(s)
- Makoto Takenaka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Small Molecule Energy, International Institute for Carbon-Neutral Energy Research, (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Mitsuhiro Kikkawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Small Molecule Energy, International Institute for Carbon-Neutral Energy Research, (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahiro Matsumoto
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Small Molecule Energy, International Institute for Carbon-Neutral Energy Research, (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takeshi Yatabe
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Small Molecule Energy, International Institute for Carbon-Neutral Energy Research, (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tatsuya Ando
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Small Molecule Energy, International Institute for Carbon-Neutral Energy Research, (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ki-Seok Yoon
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Small Molecule Energy, International Institute for Carbon-Neutral Energy Research, (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Seiji Ogo
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Small Molecule Energy, International Institute for Carbon-Neutral Energy Research, (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
6
|
Isegawa M, Sharma AK, Ogo S, Morokuma K. Electron and Hydride Transfer in a Redox-Active NiFe Hydride Complex: A DFT Study. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Miho Isegawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Akhilesh K. Sharma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Seiji Ogo
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|