1
|
Fataftah MS, Mercado BQ, Holland PL. Valence Delocalization and Metal-Metal Bonding in Carbon-Bridged Mixed-Valence Iron Complexes. Chemistry 2023; 29:e202301962. [PMID: 37574453 PMCID: PMC10843690 DOI: 10.1002/chem.202301962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
The carbide ligand in the iron-molybdenum cofactor (FeMoco) in nitrogenase bridges iron atoms in different oxidation states, yet it is difficult to discern its ability to mediate magnetic exchange interactions due to the structural complexity of the cofactor. Here, we describe two mixed-valent diiron complexes with C-based ketenylidene bridging ligands, and compare the carbon bridges with the more familiar sulfur bridges. The ground state of the [Fe2 (μ-CCO)2 ]+ complex with two carbon bridges (4) is S=1 / 2 ${{ 1/2 }}$ , and it is valence delocalized on the Mössbauer timescale with a small thermal barrier for electron hopping that stems from the low Fe-C force constant. In contrast, one-electron reduction of the [Fe2 (μ-CCO)] complex with one carbon bridge (2) affords a mixed-valence species with a high-spin ground state (S=7 / 2 ${ 7/2 }$ ), and the Fe-Fe distance contracts by 1 Å. Spectroscopic, magnetic, and computational studies of the latter reveal an Fe-Fe bonding interaction that leads to complete valence delocalization. Analysis of near-IR intervalence charge transfer transitions in 5 indicates a very large double exchange constant (B) in the range of 780-965 cm-1 . These results show that carbon bridges are extremely effective at stabilizing valence delocalized ground states in mixed-valent iron dimers.
Collapse
Affiliation(s)
- Majed S Fataftah
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT-06511, USA
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT-06511, USA
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT-06511, USA
| |
Collapse
|
2
|
Singh D, Knight BJ, Catalano VJ, García-Serres R, Maurel V, Mouesca JM, Murray LJ. Partial Deoxygenative CO Homocoupling by a Diiron Complex. Angew Chem Int Ed Engl 2023; 62:e202308813. [PMID: 37594782 DOI: 10.1002/anie.202308813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
One route to address climate change is converting carbon dioxide to synthetic carbon-neutral fuels. Whereas carbon dioxide to CO conversion has precedent in homo- and heterogeneous catalysis, deoxygenative coupling of CO to products with C-C bonds-as in liquid fuels-remains challenging. Here, we report coupling of two CO molecules by a diiron complex. Reduction of Fe2 (CO)2 L (2), where L2- is a bis(β-diketiminate) cyclophane, gives [K(THF)5 ][Fe2 (CO)2 L] (3), which undergoes silylation to Fe2 (CO)(COSiMe3 )L (4). Subsequent C-OSiMe3 bond cleavage and C=C bond formation occurs upon reduction of 4, yielding Fe2 (μ-CCO)L. CO derived ligands in this series mediate weak exchange interactions with the ketenylidene affording the smallest J value, with changes to local metal ion spin states and coupling schemes (ferro- vs. antiferromagnetism) based on DFT calculations, Mössbauer and EPR spectroscopy. Finally, reaction of 5 with KEt3 BH or methanol releases the C2 O2- ligand with retention of the diiron core.
Collapse
Affiliation(s)
- Devender Singh
- Center for Catalysis and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Brian J Knight
- Center for Catalysis and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL, USA
| | | | - Ricardo García-Serres
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38000, Grenoble, France
| | - Vincent Maurel
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - Jean-Marie Mouesca
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - Leslie J Murray
- Center for Catalysis and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Zhou Y, Liu H, Jin X, Xing X, Wang X, Wang G, Zhou M. Significant π Bonding in Coinage Metal Complexes OCTMCCO- from Infrared Photodissociation Spectroscopy and Theoretical Calculations. J Chem Phys 2022; 157:014302. [DOI: 10.1063/5.0099789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A series of coinage metal complexes in the form of TMC(CO)n- (TM=Cu, Ag, Au; n = 0-3) were generated using a laser ablation-supersonic expansion ion source in the gas phase. Mass-selected infrared photodissociation spectroscopy in conjunction with quantum chemical calculations indicated that the TMC(CO)3- complexes contain a linear OCTMCCO- core anion. Bonding analyses suggest that the linear OCTMCCO- anions are better described as the bonding interactions between a singlet ground state TM+ metal cation and the OC/CCO2- ligands in the singlet ground state. Besides the strong ligands to metal σ donation bonding components, the π-bonding components also contribute significantly to the metal-ligands bonding due to the synergetic effects of the CO and CCO2- ligands. The strengths of the bonding of the three metals show a V-shaped trend in which the second-row transition metal Ag exhibits the weakest interactions whereas the third-row transition metal Au has the strongest interactions due to the relativistic effects.
Collapse
Affiliation(s)
| | | | | | - Xiaopeng Xing
- School of Chemical Science and Engineering, Tongji University, China
| | | | | | | |
Collapse
|
4
|
Hartgerink CT, Staples RJ, Anderson CE. Crystal structure of tris-(2-di-cyclo-hexyl-phosphino-2',6'-dimeth-oxy-1,1'-biphenyl-κ P)-μ-oxoethenyl-idene- triangulo-trigold(I) bis-(tri-fluoro-methane-sulfon-yl)imide. Acta Crystallogr E Crystallogr Commun 2021; 77:537-541. [PMID: 34026260 PMCID: PMC8100268 DOI: 10.1107/s2056989021003844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/09/2021] [Indexed: 11/10/2022]
Abstract
The title ketenyl-idene, [Au3(C2O)(C26H35O2P)3](C2F6NO4S2), was obtained upon exposure of [2-(di-cyclo-hexyl-phosphino)-2',6'-dimeth-oxy-1,1'-biphen-yl]gold(I) bis-(tri-fluoro-methane-sulfon-yl)imide to acetic anhydride at elevated temperature. The ketenyl-idene bridge caps the tri-gold cluster. The title compound has provided crystals that upon analysis represent the first tri-gold ketenyl-idene with atomic distances indicative of bonding inter-action between the gold atoms.
Collapse
Affiliation(s)
- Colin T. Hartgerink
- Department of Chemistry and Biochemistry, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, MI 49546, USA
| | - Richard J. Staples
- Center for Crystallographic Research, Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Carolyn E. Anderson
- Department of Chemistry and Biochemistry, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, MI 49546, USA
| |
Collapse
|
5
|
Daugherty NT, Robilotto TJ, Bacsa J, Gray TG, Sadighi JP. A trigold carbide cation stabilized as a labile pyridine adduct. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Chemistry of gold(I, III) complexes with organic ligands as potential MOCVD precursors for fabrication of thin metallic films and nanoparticles. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|