1
|
Rueda-Espinosa J, Zhou W, Love JA, Pal S. Intramolecular Csp 3-H Activation at a Platinum(IV) Center Resulting from O 2 Activation: The Role of a Proton-Responsive Ligand and Trans Influence. J Am Chem Soc 2024; 146:34442-34451. [PMID: 39630995 DOI: 10.1021/jacs.4c11054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Aerobic oxidation of a dimethylplatinum(II) complex featuring 1,1-di(2-pyridyl)ethanol as a supporting ligand leads to the formation of two unexpected PtIV complexes (in ∼1:1 ratio), neither of which results from direct oxidation typical for PtII centers supported by popular κ2-(N,N) ligands. While one product features an isomerized PtIV center stabilized by the κ3-(N,N,O) ligand coordination mode, surprisingly, the other product results from intramolecular activation of the ligand methyl fragment. Mechanistic studies, reactivity of model complexes, and DFT calculations reveal that the critical proton-responsive nature of the ligand allows formation of intermediates that result in a concerted metalation deprotonation (CMD)-like C-H activation at PtIV. To the best of our knowledge, this is the first mechanistic delineation of Csp3-H activation at PtIV, despite being known for other high-valent platinum group metal centers.
Collapse
Affiliation(s)
- Juan Rueda-Espinosa
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Wen Zhou
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Jennifer A Love
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Shrinwantu Pal
- Department of Chemistry, Brandon University, 270 18th Street, Brandon, Manitoba R7A 6A9, Canada
| |
Collapse
|
2
|
Behnia A, Fard MA, Blacquiere JM, Puddephatt RJ. Hydroxopalladium(IV) complexes prepared using oxygen or hydrogen peroxide as oxidants. Dalton Trans 2024; 53:10901-10911. [PMID: 38885094 DOI: 10.1039/d4dt01202j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The cycloneophylpalladium(II) complexes [Pd(CH2CMe2C6H4)(κ2-N,N'-L)], 1 or 2, with L = RO(CH2)3N(CH2-2-C5H4N)2, with R = H or Me, respectively, react with either dioxygen or hydrogen peroxide in the presence of NH4[PF6] to give rare examples of the corresponding hydroxopalladium(IV) complexes [Pd(OH)(CH2CMe2C6H4)(κ3-N,N',N''-L)][PF6], 3 or 4. The complexes 3 and 4 are stable at room temperature and have been structurally characterized. On heating a solution of 3 or 4 in moist dimethylsulphoxide, selective reductive elimination with C(sp2)-O bond formation is observed, followed by hydrolysis, to give the corresponding pincer complex [Pd(OH)(κ3-N,N',N''-L)][PF6] and 2-t-butylphenol as major products. A more complex reaction occurs in chloroform solution. The mechanisms of reaction are discussed, supported by DFT calculations.
Collapse
Affiliation(s)
- Ava Behnia
- Department of Chemistry, University of Western Ontario, London, Canada N6A 5B7.
| | - Mahmood A Fard
- Department of Chemistry, University of Western Ontario, London, Canada N6A 5B7.
| | | | | |
Collapse
|
3
|
Momeni BZ, Abd-El-Aziz AS. Recent advances in the design and applications of platinum-based supramolecular architectures and macromolecules. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Li JX, Xia YQ, Cheng LM, Feng X. One-pot hydrothermal synthesis of a mononuclear cobalt(II) complex and an organic-inorganic supramolecular adduct: Structures, properties and hirshfeld surface analyses. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Puddephatt RJ. Supramolecular organometallic chemistry: the platinum(IV) paradigm. Dalton Trans 2022; 51:7011-7024. [PMID: 35438702 DOI: 10.1039/d2dt00872f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Supramolecular chemistry and the chemistry of alkyl derivatives of the transition metals are both topics of considerable current interest, but the combination of the two fields is still underdeveloped. The challenges are, in large part, experimental in nature. For example, the self-assembly of molecules in supramolecular chemistry often relies on intermolecular hydrogen bonding, but most alkyl-transition metal bonds are cleaved by the protic groups used in hydrogen bond formation. Alkyl-platinum(IV) bonds are inert to protonolysis or attack by other electrophiles under mild conditions, and this has allowed an extensive supramolecular chemistry of organoplatinum(IV) complexes to be developed, as outlined in this perspective review. Highlights include a zeolitic structure, a polyrotaxane, a double helix, a nanotube structure and an example of spontaneous resolution to form a chiral sheet structure.
Collapse
|
6
|
Abo-Amer A, Boyle PD, Puddephatt RJ. The remarkable effects of a ligand nitro substituent in organoplatinum chemistry related to activation of dioxygen or reductive elimination of methane. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Bavi M, Nabavizadeh SM, Hosseini FN, Niknam F, Hamidizadeh P, Hoseini SJ, Raoof F, Abu-Omar MM. Ligand-Mediated C-Br Oxidative Addition to Cycloplatinated(II) Complexes and Benzyl-Me C-C Bond Reductive Elimination from a Cycloplatinated(IV) Complex. ACS OMEGA 2020; 5:28621-28631. [PMID: 33195914 PMCID: PMC7658948 DOI: 10.1021/acsomega.0c03573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Reaction of the Pt(II) complexes [PtMe2(pbt)], 1a, (pbt = 2-(2-pyridyl)benzothiazole) and [PtMe(C^N)(PPh2Me)] [C^N = deprotonated 2-phenylpyridine (ppy), 1b, or deprotonated benzo[h]quinoline (bhq), 1c] with benzyl bromide, PhCH2Br, is studied. The reaction of 1a with PhCH2Br gave the Pt(IV) product complex [PtBr(CH2Ph)Me2(pbt)]. The major trans isomer is formed in a trans oxidative addition (2a), while the minor cis products (2a' and 2a″) resulted from an isomerization process. A solution of Pt(II) complex 1a in the presence of benzyl bromide in toluene at 70 °C after 7 days gradually gave the dibromo Pt(IV) complex [Pt(Br)2Me2(pbt)], 4a, as determined by NMR spectroscopy and single-crystal XRD. The reaction of complexes 1b and 1c with PhCH2Br gave the Pt(IV) complexes [PtMeBr(CH2Ph)(C^N)(PPh2Me)] (C^N = ppy; 2b; C^N = bhq, 2c), in which the phosphine and benzyl ligands are trans. Multinuclear NMR spectroscopy ruled out other isomers. Attempts to grow crystals of the cycloplatinated(IV) complex 2b yielded a previously reported Pt(II) complex [PtBr(ppy)(PPh2Me)], 3b, presumably from reductive elimination of ethylbenzene. UV-vis spectroscopy was used to study the kinetics of reaction of Pt(II) complexes 1a-1c with benzyl bromide. The data are consistent with a second-order SN2 mechanism and the first order in both the Pt complex and PhCH2Br. The rate of reaction decreases along the series 1a ≫ 1c > 1b. Density functional theory calculations were carried out to support experimental findings and understand the formation of isomers.
Collapse
Affiliation(s)
- Marzieh Bavi
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - S. Masoud Nabavizadeh
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | | | - Fatemeh Niknam
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Peyman Hamidizadeh
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - S. Jafar Hoseini
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Fatemeh Raoof
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Mahdi M. Abu-Omar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Abo-Amer A, Boyle PD, Puddephatt RJ. Push-pull ligands and the oxidation of monomethylplatinum(II) complexes with oxygen or hydrogen peroxide. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Fard MA, Puddephatt RJ. Oxidative addition of halogens to a Cycloneophylplatinum(II) complex and evidence for C–H bond activation at Platinum(IV). J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Behnia A, Fard MA, Puddephatt RJ. Stereochemistry of oxidative addition of methyl iodide and hydrogen peroxide to organoplatinum(II) complexes having an appended phenol group and the supramolecular chemistry of the platinum(IV) products. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Giménez N, Lalinde E, Lara R, Moreno MT. Design of Luminescent, Heteroleptic, Cyclometalated Pt
II
and Pt
IV
Complexes: Photophysics and Effects of the Cyclometalated Ligands. Chemistry 2019; 25:5514-5526. [DOI: 10.1002/chem.201806240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Nora Giménez
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ)Universidad de La Rioja 26006 Logroño Spain
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ)Universidad de La Rioja 26006 Logroño Spain
| | - Rebeca Lara
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ)Universidad de La Rioja 26006 Logroño Spain
| | - M. Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ)Universidad de La Rioja 26006 Logroño Spain
| |
Collapse
|
12
|
Fard MA, Behnia A, Puddephatt RJ. Platinum(II) complexes of pyridine–amine ligands with phenol substituents: isotactic supramolecular polymers. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The platinum(II) complexes [PtCl(SMe2)(κ2-N,N′-L)]Cl and [PtMe(SMe2)(κ2-N,N′-L)]Cl, L = 2-C5H4NCH2NH-x-C6H4OH (x = 2, 3, or 4), have been prepared and structurally characterized. In all cases, the complexes form supramolecular polymers in the solid state by NH··Cl and OH··Cl hydrogen bonding to the chloride anion. The ligands are chiral at the amine nitrogen atom, and in all cases, the polymers are isotactic, formed by self-recognition or narcissistic self-assembly. The structures in the crystalline state all have the Me2S ligand trans to pyridyl, but in solution, the methylplatinum(II) complexes isomerise slowly to give an equilibrium with the isomers having the methyl group trans to the pyridyl donor.
Collapse
Affiliation(s)
- Mahmood A. Fard
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Ava Behnia
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Richard J. Puddephatt
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
13
|
Azizpoor Fard M, Behnia A, Puddephatt RJ. Models for Cooperative Catalysis: Oxidative Addition Reactions of Dimethylplatinum(II) Complexes with Ligands Having Both NH and OH Functionality. ACS OMEGA 2019; 4:257-268. [PMID: 31459328 PMCID: PMC6648696 DOI: 10.1021/acsomega.8b03089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/24/2018] [Indexed: 06/10/2023]
Abstract
The role of NH and OH groups in the oxidative addition reactions of the complexes [PtMe2(κ2-N,N'-L)], L = 2-C5H4NCH2NH-x-C6H4OH [3, x = 2, L = L1; 4, x = 3, L = L2; 5, x = 4, L = L3], has been investigated. Complex 3 is the most reactive. It reacts with CH2Cl2 to give a mixture of isomers of [PtMe2(CH2Cl)(κ3-N,N',O-(L1-H)], 6, and decomposes in acetone to give [PtMe3(κ3-N,N',O-(L1-H)], 7, both of which contain the fac tridentate deprotonated ligand. Complex 3 reacts with MeI to give complex 7, whereas 4 and 5 react to give [PtIMe3(κ2-N,N'-L2))], 8, or [PtIMe3(κ2-N,N'-L3)], 9, respectively. Each complex 3, 4, or 5 reacts with either dioxygen or hydrogen peroxide to give the corresponding complex [Pt(OH)2Me2(κ2-N,N'-L)], 10, L = L1; 11, L = L2; 12, L = L3. The ligand L3 in complexes 9 and 12 is easily oxidized to the corresponding imine ligand 2-C5H4NCH=N-4-C6H4OH, L4, in forming the complexes [PtIMe3(κ2-N,N'-L4)], 13, and [Pt(OH)2Me2(κ2-N,N'-L4)], 14, respectively. The NH and OH groups play a significant role in supramolecular polymer or sheet structures of the complexes, formed through intermolecular hydrogen bonding, and these structures indicate how either intramolecular or intermolecular hydrogen bonding may assist some oxidative addition reactions.
Collapse
|
14
|
Watts D, Zavalij PY, Vedernikov AN. Consecutive C–H and O2 Activation at a Pt(II) Center To Produce Pt(IV) Aryls. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Watts
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Peter Y. Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Andrei N. Vedernikov
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
15
|
Fard M, Behnia A, Puddephatt RJ. Supramolecular Polymer and Sheet and a Double Cubane Structure in Platinum(IV) Iodide Chemistry: Solution of a Longstanding Puzzle. ACS OMEGA 2018; 3:10267-10272. [PMID: 31459156 PMCID: PMC6644743 DOI: 10.1021/acsomega.8b01367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/09/2018] [Indexed: 06/10/2023]
Abstract
The complexes [PtMe2(L)], L = 2-C5H4NCH2NH-x-C6H4OH (x = 2, 3, or 4), react with iodine to form [PtI2Me2(L)], by trans oxidative addition, when x = 3 or 4, and they are shown to have polymeric or sheet structures formed through NH···I hydrogen bonding. However, ligand dissociation occurs when x = 2 to give [(PtI2Me2) n ] and, with methyl group transfer, the complex [(PtIMe3·PtI2Me2)2]. This tetraplatinum cluster complex is shown to have a double cubane structure, thus solving a longstanding puzzle.
Collapse
|
16
|
Abo-Amer A, Boyle PD, Puddephatt RJ. Push-pull ligands to enhance the oxygen activation step in catalytic oxidation with platinum complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Nasser N, Fard MA, Boyle PD, Puddephatt RJ. Oxygen atom transfer to platinum(II): A 2-pyridyloxaziridine and a 2-pyridylnitrone as potential oxygen atom donors. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.12.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|