1
|
He Y, Lyu Y, Tymann D, Antoni PW, Hansmann MM. Cleavage of Carbodicarbenes with N 2O for Accessing Stable Diazoalkenes: Two-Fold Ligand Exchange at a C(0)-Atom. Angew Chem Int Ed Engl 2024:e202415228. [PMID: 39238432 DOI: 10.1002/anie.202415228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The cleavage of carbophosphinocarbenes and carbodicarbenes with nitrous oxide (N2O) leads to the formation of room-temperature stable diazoalkenes. The utility of Ph3P/N2 and NHC/N2 ligand exchange reactions were demonstrated by accessing novel benzimidazole- and benzothiazole derived diazoalkenes, which are not accessible by the current state-of-the-art methods. The stable diazoalkenes subsequently allow further ligand exchange reactions at C(0) with carbon monoxide, isocyanide, or a diamidocarbene (DAC). Overall, the combination of hitherto unknown NHC/N2 and N2/L (L = DAC, CO, R-NC) ligand exchange reactions at a C(0) center allow the selective functionalization of the carbodicarbene ligand structure which represents a new methodology to rapidly assemble novel carbodicarbenes or cumulenic compounds.
Collapse
Affiliation(s)
- Yijie He
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Yichong Lyu
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - David Tymann
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Patrick W Antoni
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Max M Hansmann
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
2
|
Greenlee A, Weitekamp RA, Foster JC, Leguizamon SC. PhotoROMP: The Future Is Bright. ACS Catal 2024; 14:6217-6227. [PMID: 38660608 PMCID: PMC11036397 DOI: 10.1021/acscatal.4c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Since the earliest investigations of olefin metathesis catalysis, light has been the choice for controlling the catalyst activity on demand. From the perspective of energy efficiency, temporal and spatial control, and selectivity, photochemistry is not only an attractive alternative to traditional thermal manufacturing techniques but also arguably a superior manifold for advanced applications like additive manufacturing (AM). In the last three decades, pioneering work in the field of ring-opening metathesis polymerization (ROMP) has broadened the scope of material properties achievable through AM, particularly using light as both an activating and deactivating stimulus. In this Perspective, we explore trends in photocontrolled ROMP systems with an emphasis on approaches to photoinduced activation and deactivation of metathesis catalysts. Recent work has yielded a myriad of commercial and synthetically accessible photosensitive catalyst systems, although comparatively little attention has been paid to achieving precise control over polymer morphology using light. Metal-free, photophysical, and living ROMP systems have also been relatively underexplored. To take fuller advantage of both the thermomechanical properties of ROMP polymers and the operational simplicity of photocontrol, clear directions for the field are to improve the reversibility of activation and deactivation strategies as well as to further develop photocontrolled approaches to tuning cross-link density and polymer tacticity.
Collapse
Affiliation(s)
- Andrew
J. Greenlee
- Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Jeffrey C. Foster
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United
States
| | | |
Collapse
|
3
|
Kooij B, Dong Z, Fadaei-Tirani F, Scopelliti R, Severin K. Synthesis and Reactivity of an Anionic Diazoolefin. Angew Chem Int Ed Engl 2023; 62:e202308625. [PMID: 37387555 DOI: 10.1002/anie.202308625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/01/2023]
Abstract
Bent (hetero)allenes such as carbodicarbenes and carbodiphosphoranes can act as neutral C-donor ligands, and diverse applications in coordination chemistry have been reported. N-Heterocyclic diazoolefins are heterocumulenes, which can function in a similar fashion as L-type ligands. Herein, we describe the synthesis and the reactivity of an anionic diazoolefin. This compound displays distinct reactivity compared to neutral diazoolefins, as evidenced by the preparation of diazo compounds via protonation, alkylation, or silylation. The anionic diazoolefin can be employed as an ambidentate, X-type ligand in salt metathesis reactions with metal halide complexes. Extrusion of dinitrogen was observed in a reaction with PCl(NiPr2 )2 , resulting in a stable phosphinocarbene.
Collapse
Affiliation(s)
- Bastiaan Kooij
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Zhaowen Dong
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064, Chengdu, P. R. China
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
4
|
Dolai R, Kumar R, Elvers BJ, Pal PK, Joseph B, Sikari R, Nayak MK, Maiti A, Singh T, Chrysochos N, Jayaraman A, Krummenacher I, Mondal J, Priyakumar UD, Braunschweig H, Yildiz CB, Schulzke C, Jana A. Carbodicarbenes and Striking Redox Transitions of their Conjugate Acids: Influence of NHC versus CAAC as Donor Substituents. Chemistry 2023; 29:e202202888. [PMID: 36129127 PMCID: PMC10100033 DOI: 10.1002/chem.202202888] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/11/2023]
Abstract
Herein, a new type of carbodicarbene (CDC) comprising two different classes of carbenes is reported; NHC and CAAC as donor substituents and compare the molecular structure and coordination to Au(I)Cl to those of NHC-only and CAAC-only analogues. The conjugate acids of these three CDCs exhibit notable redox properties. Their reactions with [NO][SbF6 ] were investigated. The reduction of the conjugate acid of CAAC-only based CDC with KC8 results in the formation of hydrogen abstracted/eliminated products, which proceed through a neutral radical intermediate, detected by EPR spectroscopy. In contrast, the reduction of conjugate acids of NHC-only and NHC/CAAC based CDCs led to intermolecular reductive (reversible) carbon-carbon sigma bond formation. The resulting relatively elongated carbon-carbon sigma bonds were found to be readily oxidized. They were, thus, demonstrated to be potent reducing agents, underlining their potential utility as organic electron donors and n-dopants in organic semiconductor molecules.
Collapse
Affiliation(s)
- Ramapada Dolai
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Rahul Kumar
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Benedict J. Elvers
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Strasse 417489GreifswaldGermany
| | - Pradeep Kumar Pal
- International Institute of Information Technology GachibowliHyderabad500032India
| | - Benson Joseph
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Rina Sikari
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Mithilesh Kumar Nayak
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Avijit Maiti
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Tejender Singh
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Arumugam Jayaraman
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - U. Deva Priyakumar
- International Institute of Information Technology GachibowliHyderabad500032India
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Cem B. Yildiz
- Department of Aromatic and Medicinal PlantsAksaray UniversityAksaray68100Turkey
| | - Carola Schulzke
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Strasse 417489GreifswaldGermany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| |
Collapse
|
5
|
Azpíroz R, Karataş MO, Passarelli V, Özdemir I, Pérez-Torrente JJ, Castarlenas R. Preparation of Mixed Bis-N-Heterocyclic Carbene Rhodium(I) Complexes. Molecules 2022; 27:7002. [PMID: 36296594 PMCID: PMC9611579 DOI: 10.3390/molecules27207002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
A series of mixed bis-NHC rhodium(I) complexes of type RhCl(η2-olefin)(NHC)(NHC') have been synthesized by a stepwise reaction of [Rh(μ-Cl)(η2-olefin)2]2 with two different NHCs (NHC = N-heterocyclic carbene), in which the steric hindrance of both NHC ligands and the η2-olefin is critical. Similarly, new mixed coumarin-functionalized bis-NHC rhodium complexes have been prepared by a reaction of mono NHC complexes of type RhCl(NHC-coumarin)(η2,η2-cod) with the corresponding azolium salt in the presence of an external base. Both synthetic procedures proceed selectively and allow the preparation of mixed bis-NHC rhodium complexes in good yields.
Collapse
Affiliation(s)
- Ramón Azpíroz
- Departamento de Química Inorgánica—Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza—CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Mert Olgun Karataş
- Departamento de Química Inorgánica—Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza—CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Department of Chemistry, Faculty of Sciences, Inonu University, 44280 Malatya, Turkey
| | - Vincenzo Passarelli
- Departamento de Química Inorgánica—Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza—CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ismail Özdemir
- Department of Chemistry, Faculty of Sciences, Inonu University, 44280 Malatya, Turkey
| | - Jesús J. Pérez-Torrente
- Departamento de Química Inorgánica—Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza—CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ricardo Castarlenas
- Departamento de Química Inorgánica—Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza—CSIC, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
6
|
Wang T, Leung T, Liang Y, Wang C, Ong T. Bis(pyridyl)carbodicarbene supported ruthenium complexes and their catalytic application in
hydrogen‐transfer
reaction. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Tsz‐Fai Leung
- Department of Chemistry National Sun Yat‐sen University Kaohsiung Taiwan
| | - Yu‐Fu Liang
- Institute of Chemistry Academia Sinica Taipei Taiwan
| | - Chung‐Yu Wang
- Institute of Chemistry Academia Sinica Taipei Taiwan
- Department of Chemistry National Central University Jhong‐Li Taiwan
| | - Tiow‐Gan Ong
- Institute of Chemistry Academia Sinica Taipei Taiwan
- Department of Chemistry National Taiwan University Taipei Taiwan
| |
Collapse
|
7
|
Ali R, Ahmed W, Jayant V, alvi S, Ahmed N, Ahmed A. Metathesis reactions in total‐ and natural product fragments syntheses. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rashid Ali
- Jamia Millia Islamia New Delhi India 110025 Department of Chemistry Jamia Nagar,New Delhi india110025 110025 New Delhi INDIA
| | - Waqar Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Vikrant Jayant
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - shakeel alvi
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Nadeem Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Azeem Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| |
Collapse
|
8
|
Complexes of Dichlorogermylene with Phosphine/Sulfoxide-Supported Carbone as Ligand. Molecules 2021; 26:molecules26072005. [PMID: 33916075 PMCID: PMC8037485 DOI: 10.3390/molecules26072005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
Due to their remarkable electronic features, recent years have witnessed the emergence of carbones L2C, which consist in two donating L ligands coordinating a central carbon atom bearing two lone pairs. In this context, the phosphine/sulfoxide-supported carbone 4 exhibits a strong nucleophilic character, and here, we describe its ability to coordinate dichlorogermylene. Two original stable coordination complexes were obtained and fully characterized in solution and in the solid state by NMR spectroscopy and X-ray diffraction analysis, respectively. At 60 °C, in the presence of 4, the Ge(II)-complex 5 undergoes a slow isomerization that transforms the bis-ylide ligand into an yldiide.
Collapse
|
9
|
Zhao L, Chai C, Petz W, Frenking G. Carbones and Carbon Atom as Ligands in Transition Metal Complexes. Molecules 2020; 25:molecules25214943. [PMID: 33114580 PMCID: PMC7663554 DOI: 10.3390/molecules25214943] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 01/22/2023] Open
Abstract
This review summarizes experimental and theoretical studies of transition metal complexes with two types of novel metal-carbon bonds. One type features complexes with carbones CL2 as ligands, where the carbon(0) atom has two electron lone pairs which engage in double (σ and π) donation to the metal atom [M]⇇CL2. The second part of this review reports complexes which have a neutral carbon atom C as ligand. Carbido complexes with naked carbon atoms may be considered as endpoint of the series [M]-CR3 → [M]-CR2 → [M]-CR → [M]-C. This review includes some work on uranium and cerium complexes, but it does not present a complete coverage of actinide and lanthanide complexes with carbone or carbide ligands.
Collapse
Affiliation(s)
- Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China; (L.Z.); (C.C.)
| | - Chaoqun Chai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China; (L.Z.); (C.C.)
| | - Wolfgang Petz
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35043 Marburg, Germany
- Correspondence: (W.P.); (G.F.)
| | - Gernot Frenking
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China; (L.Z.); (C.C.)
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35043 Marburg, Germany
- Correspondence: (W.P.); (G.F.)
| |
Collapse
|
10
|
Walley JE, Dickie DA, Gilliard RJ. Crystallographic study of a heteroleptic chloroberyllium borohydride carbodicarbene complex. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2020. [DOI: 10.1515/znb-2020-0033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Interest in beryllium, the lightest member of group 2 elements, has grown substantially within the synthetic community. Herein, we report the synthesis and crystal structure of a heteroleptic haloberyllium borohydride bis(1-isopropyl-3-methyl-benzimidazol-2-ylidene)methane ‘carbodicarbene’ (CDC) complex [(CDC)BeCl(BH4)]. Crystallographic data: Triclinic space group P1̅, a = 8.8695(14), b = 12.394(2), c = 16.844(3) Å, α = 102.395(4), β = 96.456(4), γ = 99.164(4)°, wR2 (all data) = 0.2706 for 6720 unique data and 357 refined parameters.
Collapse
Affiliation(s)
- Jacob E. Walley
- Department of Chemistry , University of Virginia , 409 McCormick Rd, PO Box 400319 , Charlottesville, VA , USA
| | - Diane A. Dickie
- Department of Chemistry , University of Virginia , 409 McCormick Rd, PO Box 400319 , Charlottesville, VA , USA
| | - Robert J. Gilliard
- Department of Chemistry , University of Virginia , 409 McCormick Rd, PO Box 400319 , Charlottesville, VA , USA
| |
Collapse
|
11
|
Maity AK, Ward RJ, Rupasinghe DMRYP, Zeller M, Walensky JR, Bart SC. Organometallic Uranyl Complexes Featuring a Carbodicarbene Ligand. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arnab K. Maity
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Robert J. Ward
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | | | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Suzanne C. Bart
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Chan SC, Ang ZZ, Gupta P, Ganguly R, Li Y, Ye S, England J. Carbodicarbene Ligand Redox Noninnocence in Highly Oxidized Chromium and Cobalt Complexes. Inorg Chem 2020; 59:4118-4128. [PMID: 32101411 DOI: 10.1021/acs.inorgchem.0c00153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbodicarbenes (CDCs) possess two lone pairs of electrons on their central carbone C atom (Ccarbone). Coordination to a transition metal via a σ bond leaves one pair of electrons with appropriate symmetry for π donation to the metal. However, the high energy of the latter also renders the CDC ligand potentially redox-active. Herein, we explore these alternatives in the redox series [Cr(L)2]n+ and [Co(L)2]n+ (n = 2-5), where L is a tridentate ligand comprised of a central CDC and two flanking pyridine donors. To this end, all members of both redox series were synthesized and their electronic structures were investigated by using a combination of 1H NMR, Evans' NMR, IR, UV-vis, and EPR spectroscopies, SQUID magnetometry, X-ray crystallography, and density functional theory studies. Whereas [CoII(L)2]2+ is a straightforward low-spin (S = 1/2) cobalt(II) complex, the corresponding chromium complex was found to feature an electronic structure that is intermediate between the two limiting resonance forms [CrIII(L•-)(L)]2+ and [CrII(L)2]2+. In the case of the tri-, tetra-, and pentacationic complexes, the qualitatively identical electronic structures [MIII(L)2]3+, [MIII(L•+)(L)]4+, and [MIII(L•+)2]5+ were observed for both metals. Thus, the metal ions retain a 3+ oxidation state throughout, and the higher redox states contain oxidized ligands. The majority of the unpaired spin on the cation radical ligands was calculated to be localized in π-symmetry orbitals on the coordinated Ccarbone atoms. Analogous behavior was previously reported for the corresponding iron redox series and, as such, redox noninnocence in oxidized CDC and, more broadly, carbone complexes is likely widely accessible.
Collapse
Affiliation(s)
- Siu-Chung Chan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University (NTU), 21 Nanyang Link, 637371, Singapore
| | - Zhi Zhong Ang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University (NTU), 21 Nanyang Link, 637371, Singapore
| | - Puneet Gupta
- Max-Plank-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr D-45470, Germany
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University (NTU), 21 Nanyang Link, 637371, Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University (NTU), 21 Nanyang Link, 637371, Singapore
| | - Shengfa Ye
- Max-Plank-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr D-45470, Germany.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jason England
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University (NTU), 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
13
|
Ambre R, Yang H, Chen WC, Yap GPA, Jurca T, Ong TG. Nickel Carbodicarbene Catalyzes Kumada Cross-Coupling of Aryl Ethers with Grignard Reagents through C-O Bond Activation. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ram Ambre
- Institute of Chemistry; Academia Sinica; No. 128, Sec. 2, Academia Road, Nangang, Taipei Taiwan, R.O.C
| | - Hsuan Yang
- Institute of Chemistry; Academia Sinica; No. 128, Sec. 2, Academia Road, Nangang, Taipei Taiwan, R.O.C
| | - Wen-Ching Chen
- Institute of Chemistry; Academia Sinica; No. 128, Sec. 2, Academia Road, Nangang, Taipei Taiwan, R.O.C
| | - Glenn P. A. Yap
- Department of Chemistry and Biochemistry; University of Delaware; 19716 Delaware USA
| | - Titel Jurca
- Department of Chemistry; University of Central Florida; 4111 Libra Drive, Orlando Florida USA
- Renewable Energy and Chemical Transformations Cluster; University of Central Florida; 4353 Scorpius Street, Orlando Florida USA
| | - Tiow-Gan Ong
- Institute of Chemistry; Academia Sinica; No. 128, Sec. 2, Academia Road, Nangang, Taipei Taiwan, R.O.C
- Department of Applied Chemistry; National Chiao Tung University; Taiwan, R.O.C
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Road, Taipei Taiwan, R.O.C
| |
Collapse
|
14
|
Doddi A, Peters M, Tamm M. N-Heterocyclic Carbene Adducts of Main Group Elements and Their Use as Ligands in Transition Metal Chemistry. Chem Rev 2019; 119:6994-7112. [PMID: 30983327 DOI: 10.1021/acs.chemrev.8b00791] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
N-Heterocyclic carbenes (NHC) are nowadays ubiquitous and indispensable in many research fields, and it is not possible to imagine modern transition metal and main group element chemistry without the plethora of available NHCs with tailor-made electronic and steric properties. While their suitability to act as strong ligands toward transition metals has led to numerous applications of NHC complexes in homogeneous catalysis, their strong σ-donating and adaptable π-accepting abilities have also contributed to an impressive vitalization of main group chemistry with the isolation and characterization of NHC adducts of almost any element. Formally, NHC coordination to Lewis acids affords a transfer of nucleophilicity from the carbene carbon atom to the attached exocyclic moiety, and low-valent and low-coordinate adducts of the p-block elements with available lone pairs and/or polarized carbon-element π-bonds are able to act themselves as Lewis basic donor ligands toward transition metals. Accordingly, the availability of a large number of novel NHC adducts has not only produced new varieties of already existing ligand classes but has also allowed establishment of numerous complexes with unusual and often unprecedented element-metal bonds. This review aims at summarizing this development comprehensively and covers the usage of N-heterocyclic carbene adducts of the p-block elements as ligands in transition metal chemistry.
Collapse
Affiliation(s)
- Adinarayana Doddi
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Marius Peters
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
15
|
Jawiczuk M, Janaszkiewicz A, Trzaskowski B. The influence of the cationic carbenes on the initiation kinetics of ruthenium-based metathesis catalysts; a DFT study. Beilstein J Org Chem 2018; 14:2872-2880. [PMID: 30546471 PMCID: PMC6278762 DOI: 10.3762/bjoc.14.266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/01/2018] [Indexed: 11/30/2022] Open
Abstract
Cationic carbenes are a relatively new and rare group of ancillary ligands, which have shown their superior activity in a number of challenging catalytic reactions. In ruthenium-based metathesis catalysis they are often used as ammonium tags, to provide water-soluble, environment-friendly catalysts. In this work we performed computational studies on three cationic carbenes with the formal positive charge located at different distances from the carbene carbon. We show that the predicted initiation rates of Grubbs, indenylidene, and Hoveyda–Grubbs-like complexes incorporating these carbenes show little variance and are similar to initiation rates of standard Grubbs, indenylidene, and Hoveyda–Grubbs catalysts. In all investigated cases the partial charge of the carbene carbon atom is similar, resulting in comparable Ccarbene–Ru bond strengths and Ru–P/O dissociation Gibbs free energies.
Collapse
Affiliation(s)
- Magdalena Jawiczuk
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| | | | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| |
Collapse
|
16
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Chan SC, Gupta P, Engelmann X, Ang ZZ, Ganguly R, Bill E, Ray K, Ye S, England J. Observation of Carbodicarbene Ligand Redox Noninnocence in Highly Oxidized Iron Complexes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Siu-Chung Chan
- Division of Chemistry and Biological Chemistry; School of Physical & Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Puneet Gupta
- Max-Plank-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Xenia Engelmann
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Zhi Zhong Ang
- Division of Chemistry and Biological Chemistry; School of Physical & Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry; School of Physical & Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Eckhard Bill
- Max-Plank-Institut für Chemische Energie Konversion; Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany
| | - Kallol Ray
- Department of Chemistry; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Shengfa Ye
- Max-Plank-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Jason England
- Division of Chemistry and Biological Chemistry; School of Physical & Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
18
|
Chan SC, Gupta P, Engelmann X, Ang ZZ, Ganguly R, Bill E, Ray K, Ye S, England J. Observation of Carbodicarbene Ligand Redox Noninnocence in Highly Oxidized Iron Complexes. Angew Chem Int Ed Engl 2018; 57:15717-15722. [PMID: 30239076 DOI: 10.1002/anie.201809158] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/14/2018] [Indexed: 01/06/2023]
Abstract
To probe the possibility that carbodicarbenes (CDCs) are redox active ligands, all four members of the redox series [Fe(1)2 ]n+ (n=2-5) were synthesized, where 1 is a neutral tridentate CDC. Through a combination of spectroscopy and DFT calculations, the electronic structure of the pentacation is shown to be [FeIII (1.+ )2 ]5+ (S= 1 / 2 ). That of [Fe(1)2 ]4+ is more ambiguous, but it has significant contributions from the open-shell singlet [FeIII (1)(1.+ )]4+ (S=0). The observed spin states derive from antiferromagnetic coupling of their constituent low-spin iron(III) centres and cation radical ligands. This marks the first time redox activity has been observed for carbones and expands the diverse chemical behaviour known for these ligands.
Collapse
Affiliation(s)
- Siu-Chung Chan
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Puneet Gupta
- Max-Plank-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Xenia Engelmann
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Zhi Zhong Ang
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Eckhard Bill
- Max-Plank-Institut für Chemische Energie Konversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Shengfa Ye
- Max-Plank-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Jason England
- Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
19
|
Luo SX, Engle KM, Dong X, Hejl A, Takase MK, Henling LM, Liu P, Houk KN, Grubbs RH. An Initiation Kinetics Prediction Model Enables Rational Design of Ruthenium Olefin Metathesis Catalysts Bearing Modified Chelating Benzylidenes. ACS Catal 2018; 8:4600-4611. [PMID: 32528741 DOI: 10.1021/acscatal.8b00843] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rational design of second-generation ruthenium olefin metathesis catalysts with desired initiation rates can be enabled by a computational model that depends on a single thermodynamic parameter. Using a computational model with no assumption about the specific initiation mechanism, the initiation kinetics of a spectrum of second-generation ruthenium olefin metathesis catalysts bearing modified chelating ortho-alkoxy benzylidenes were predicted in this work. Experimental tests of the validity of the computational model were achieved by the synthesis of a series of ruthenium olefin metathesis catalysts and investigation of initiation rates by UV/Vis kinetics, NMR spectroscopy, and structural characterization by X-ray crystallography. Included in this series of catalysts were thirteen catalysts bearing alkoxy groups with varied steric bulk on the chelating benzylidene, ranging from ethoxy to dicyclohexylmethoxy groups. The experimentally observed initiation kinetics of the synthesized catalysts were in good accordance with computational predictions. Notably, the fast initiation rate of the dicyclohexylmethoxy catalyst was successfully predicted by the model, and this complex is believed to be among the fastest initiating Hoveyda-Grubbs-type catalysts reported to date. The compatibility of the predictive model with other catalyst families, including those bearing alternative NHC ligands or disubstituted alkoxy benzylidenes, was also examined.
Collapse
Affiliation(s)
- Shao-Xiong Luo
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, United States
| | - Keary M. Engle
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaofei Dong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Andrew Hejl
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, United States
| | - Michael K. Takase
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, United States
| | - Lawrence M. Henling
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Robert H. Grubbs
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
20
|
Liu AH, Dang YL, Zhou H, Zhang JJ, Lu XB. CO2
Adducts of Carbodicarbenes: Robust and Versatile Organocatalysts for Chemical Transformation of Carbon Dioxide into Heterocyclic Compounds. ChemCatChem 2018. [DOI: 10.1002/cctc.201800148] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- An-Hua Liu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 P.R. China
| | - Ya-Li Dang
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 P.R. China
| | - Hui Zhou
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 P.R. China
| | - Jin-Ju Zhang
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 P.R. China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 P.R. China
| |
Collapse
|
21
|
Tanimoto R, Yamada K, Suzuki S, Kozaki M, Okada K. Group 11 Metal Complexes Coordinated by the (Nitronyl Nitroxide)-2-ide Radical Anion: Facile Oxidation of Stable Radicals Controlled by Metal-Carbon Bonds in Radical-Metalloids. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ryu Tanimoto
- Graduate School of Science; Osaka City University; 558-8585 Osaka Osaka Prefecture Japan
| | - Kiyomi Yamada
- Graduate School of Science; Osaka City University; 558-8585 Osaka Osaka Prefecture Japan
| | - Shuichi Suzuki
- Graduate School of Science; Osaka City University; 558-8585 Osaka Osaka Prefecture Japan
| | - Masatoshi Kozaki
- Graduate School of Science; Osaka City University; 558-8585 Osaka Osaka Prefecture Japan
| | - Keiji Okada
- Graduate School of Science; Osaka City University; 558-8585 Osaka Osaka Prefecture Japan
- The Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA); 558-8585 Osaka Osaka Prefecture Japan
| |
Collapse
|
22
|
Lozano González M, Bousquet L, Hameury S, Alvarez Toledano C, Saffon-Merceron N, Branchadell V, Maerten E, Baceiredo A. Phosphine/Sulfoxide-Supported Carbon(0) Complex. Chemistry 2018; 24:2570-2574. [PMID: 29318686 DOI: 10.1002/chem.201705557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 01/06/2023]
Abstract
A new carbon(0) complex 2 with two different L ligands, a phosphine and a sulfoxide, was synthesized and fully characterized. This new type of carbone exhibits excellent coordination ability, in contrast to the related phosphine/sulfide-supported carbon(0) complexes. Several organometallic complexes were isolated and, of special interest, the νav (CO) value of RhI -dicarbonyl complex indicates that 2 has a donor capability superior to classical NHCs.
Collapse
Affiliation(s)
- Mariana Lozano González
- Université de Toulouse, UPS, and CNRS, LHFA UMR 5069, 118 route de Narbonne, 31062, Toulouse, France.,Instituto de Química-UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P., 04510 Ciudad de, México, México
| | - Laura Bousquet
- Université de Toulouse, UPS, and CNRS, LHFA UMR 5069, 118 route de Narbonne, 31062, Toulouse, France
| | - Sophie Hameury
- Université de Toulouse, UPS, and CNRS, LHFA UMR 5069, 118 route de Narbonne, 31062, Toulouse, France
| | - Cecilio Alvarez Toledano
- Instituto de Química-UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P., 04510 Ciudad de, México, México
| | - Nathalie Saffon-Merceron
- Université de Toulouse, UPS, and CNRS, ICT FR2599, 118 route de Narbonne, 31062, Toulouse, France
| | - Vicenç Branchadell
- Departament de Quimica, Universitat Autonoma de Barcelona, 08193, Bellaterra, Spain
| | - Eddy Maerten
- Université de Toulouse, UPS, and CNRS, LHFA UMR 5069, 118 route de Narbonne, 31062, Toulouse, France
| | - Antoine Baceiredo
- Université de Toulouse, UPS, and CNRS, LHFA UMR 5069, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|