1
|
Rubel CZ, Ravn AK, Ho HC, Yang S, Li ZQ, Engle KM, Vantourout JC. Stereodivergent, Kinetically Controlled Isomerization of Terminal Alkenes via Nickel Catalysis. Angew Chem Int Ed Engl 2024; 63:e202320081. [PMID: 38494945 DOI: 10.1002/anie.202320081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 03/19/2024]
Abstract
Because internal alkenes are more challenging synthetic targets than terminal alkenes, metal-catalyzed olefin mono-transposition (i.e., positional isomerization) approaches have emerged to afford valuable E- or Z- internal alkenes from their complementary terminal alkene feedstocks. However, the applicability of these methods has been hampered by lack of generality, commercial availability of precatalysts, and scalability. Here, we report a nickel-catalyzed platform for the stereodivergent E/Z-selective synthesis of internal alkenes at room temperature. Commercial reagents enable this one-carbon transposition of terminal alkenes to valuable E- or Z-internal alkenes via a Ni-H-mediated insertion/elimination mechanism. Though the mechanistic regime is the same in both systems, the underlying pathways that lead to each of the active catalysts are distinct, with the Z-selective catalyst forming from comproportionation of an oxidative addition complex followed by oxidative addition with substrate and the E-selective catalyst forming from protonation of the metal by the trialkylphosphonium salt additive. In each case, ligand sterics and denticity control stereochemistry and prevent over-isomerization.
Collapse
Affiliation(s)
- Camille Z Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICMBS, UMR 5246 du CNRS), Université Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France
| | - Anne K Ravn
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hang Chi Ho
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shenghua Yang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Julien C Vantourout
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICMBS, UMR 5246 du CNRS), Université Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France
- Syngenta Crop Protection AG, Schaffauserstrasse, 4332, Stein, Switzerland
| |
Collapse
|
2
|
King A, Wang J, Liu T, Raghavan A, Tomson NC, Zhukhovitskiy AV. Influence of Metal Identity and Complex Nuclearity in Kumada Cross-Coupling Polymerizations with a Pyridine Diimine-Based Ligand Scaffold. ACS POLYMERS AU 2023; 3:475-481. [PMID: 38107419 PMCID: PMC10722565 DOI: 10.1021/acspolymersau.3c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 12/19/2023]
Abstract
Cross-coupling polymerizations have fundamentally changed the field of conjugated polymers (CPs) by expanding the scope of accessible materials. Despite the prevalence of cross-coupling in CP synthesis, almost all polymerizations rely on mononuclear Ni or Pd catalysts. Here, we report a systematic exploration of mono- and dinuclear Fe and Ni precatalysts with a pyridine diimine ligand scaffold for Kumada cross-coupling polymerization of a donor thiophene and an acceptor benzotriazole monomers. We observe that variation of the metal identity from Ni to Fe produces contrasting polymerization mechanisms, while complex nuclearity has a minimal impact on reactivity. Specifically, Fe complexes appear to catalyze step-growth Kumada polymerizations and can readily access both Csp2-Csp3 and Csp2-Csp2 cross-couplings, while Ni complexes catalyze chain-growth polymerizations and predominantly Csp2-Csp2 cross-couplings. Thus, our work sheds light on important design parameters for transition metal complexes used in cross-coupling polymerizations, demonstrates the viability of iron catalysis in Kumada polymerization, and opens the door to novel polymer compositions.
Collapse
Affiliation(s)
- Andrew
J. King
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27514, United States
| | - Jiashu Wang
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tianchang Liu
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Adharsh Raghavan
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Neil C. Tomson
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aleksandr V. Zhukhovitskiy
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27514, United States
| |
Collapse
|
3
|
Newman-Stonebraker SH, Raab TJ, Roshandel H, Doyle AG. Synthesis of Nickel(I)-Bromide Complexes via Oxidation and Ligand Displacement: Evaluation of Ligand Effects on Speciation and Reactivity. J Am Chem Soc 2023; 145:19368-19377. [PMID: 37610310 PMCID: PMC10616978 DOI: 10.1021/jacs.3c06233] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Nickel's +1 oxidation state has received much interest due to its varied and often enigmatic behavior in increasingly popular catalytic methods. In part, the lack of understanding about NiI results from common synthetic strategies limiting the breadth of complexes that are accessible for mechanistic study and catalyst design. We report an oxidative approach using tribromide salts that allows for the generation of a well-defined precursor, [NiI(COD)Br]2, as well as several new NiI complexes. Included among them are complexes bearing bulky monophosphines, for which structure-speciation relationships are established and catalytic reactivity in a Suzuki-Miyaura coupling (SMC) is investigated. Notably, these routes also allow for the synthesis of well-defined monomeric t-Bubpy-bound NiI complexes, which has not previously been achieved. These complexes, which react with aryl halides, can enable previously challenging mechanistic investigations and present new opportunities for catalysis and synthesis.
Collapse
Affiliation(s)
- Samuel H. Newman-Stonebraker
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| | - T. Judah Raab
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Hootan Roshandel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Abigail G. Doyle
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
4
|
Borowski JE, Newman-Stonebraker SH, Doyle AG. Comparison of Monophosphine and Bisphosphine Precatalysts for Ni-Catalyzed Suzuki-Miyaura Cross-Coupling: Understanding the Role of the Ligation State in Catalysis. ACS Catal 2023; 13:7966-7977. [PMID: 38037565 PMCID: PMC10688240 DOI: 10.1021/acscatal.3c01331] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Practical advances in Ni-catalyzed Suzuki-Miyaura cross-coupling (SMC) have been limited by a lack of mechanistic understanding of phosphine ligand effects. While bisphosphines are commonly used in these methodologies, we have observed instances where monophosphines can provide comparable or higher levels of reactivity. Seeking to understand the role of ligation state in catalysis, we performed a head-to-head comparison study of C(sp2)-C(sp2) Ni SMCs catalyzed by mono and bisphosphine precatalysts using six distinct substrate pairings. Significant variation in optimal precatalyst was observed, with the monophosphine precatalyst tending to outperform the bisphosphines with electronically deactivated and sterically hindered substrates. Mechanistic experiments revealed a role for monoligated (P1Ni) species in accelerating the fundamental organometallic steps of the catalytic cycle, while highlighting the need for bisligated (P2Ni) species to avoid off-cycle reactivity and catalyst poisoning by heterocyclic motifs. These findings provide guidelines for ligand selection against challenging substrates and future ligand design tailored to the mechanistic demands of Ni-catalyzed SMCs.
Collapse
Affiliation(s)
| | - Samuel H. Newman-Stonebraker
- Department of Chemistry, Princeton University, Princeton, NJ 08544
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Abigail G. Doyle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| |
Collapse
|
5
|
Day CS, Rentería-Gómez Á, Ton SJ, Gogoi AR, Gutierrez O, Martin R. Elucidating electron-transfer events in polypyridine nickel complexes for reductive coupling reactions. Nat Catal 2023; 6:244-253. [PMID: 39525327 PMCID: PMC11546168 DOI: 10.1038/s41929-023-00925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023]
Abstract
Polypyridine-ligated nickel complexes are widely used as privileged catalysts in a variety of cross-coupling reactions. The rapid adoption of these complexes is tentatively attributed to their ability to shuttle between different oxidation states and engage in electron-transfer reactions. However, these reactions are poorly understood in mechanistic terms. Here we investigate the reactivity of pseudohalide- and halide-ligated Ni(II) complexes, containing polypyridine ligands, in electron-transfer reactions. Specifically, Ni(II) halide complexes trigger comproportionation with Ni(0) with exceptional ease en route to Ni(I)L n species, whereas the corresponding Ni(II) pseudohalide congeners are resistant to electron transfer, with Ni(I) pseudohalides being prone to disproportionation events. These observations are corroborated by electrochemical techniques and detailed quantum mechanical calculations. We also show that catalytically inactive Ni(II) pseudohalide complexes can be reactivated in the presence of exogeneous salts. From a broader perspective, this study provides rationalizations for overlooked and fundamental steps within the Ni-catalysed cross-coupling arena, thus offering blueprints for designing future Ni-catalysed reactions.
Collapse
Affiliation(s)
- Craig S. Day
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Ángel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, TX, USA
- These authors contributed equally: Ángel Rentería-Gómez, Stephanie J. Ton, Achyut Ranjan Gogoi
| | - Stephanie J. Ton
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona, Spain
- These authors contributed equally: Ángel Rentería-Gómez, Stephanie J. Ton, Achyut Ranjan Gogoi
| | - Achyut Ranjan Gogoi
- Department of Chemistry, Texas A&M University, College Station, TX, USA
- These authors contributed equally: Ángel Rentería-Gómez, Stephanie J. Ton, Achyut Ranjan Gogoi
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
6
|
Charboneau DJ, Barth EL, Hazari N, Uehling MR, Zultanski SL. A Widely Applicable Dual Catalytic System for Cross-Electrophile Coupling Enabled by Mechanistic Studies. ACS Catal 2020; 10:12642-12656. [PMID: 33628617 DOI: 10.1021/acscatal.0c03237] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A dual catalytic system for cross-electrophile coupling reactions between aryl halides and alkyl halides that features a Ni catalyst, a Co cocatalyst, and a mild homogeneous reductant is described. Mechanistic studies indicate that the Ni catalyst activates the aryl halide, while the Co cocatalyst activates the alkyl halide. This allows the system to be rationally optimized for a variety of substrate classes by simply modifying the loadings of the Ni and Co catalysts based on the reaction product profile. For example, the coupling of aryl bromides and aryl iodides with alkyl bromides, alkyl iodides, and benzyl chlorides is demonstrated using the same Ni and Co catalysts under similar reaction conditions but with different optimal catalyst loadings in each case. Our system is tolerant of numerous functional groups and is capable of coupling heteroaryl halides, di-ortho-substituted aryl halides, pharmaceutically relevant druglike aryl halides, and a diverse range of alkyl halides. Additionally, the dual catalytic platform facilitates a series of selective one-pot three-component cross-electrophile coupling reactions of bromo(iodo)arenes with two distinct alkyl halides. This demonstrates the unique level of control that the platform provides and enables the rapid generation of molecular complexity. The system can be readily utilized for a wide range of applications as all reaction components are commercially available, the reaction is scalable, and toxic amide-based solvents are not required. It is anticipated that this strategy, as well as the underlying mechanistic framework, will be generalizable to other cross-electrophile coupling reactions.
Collapse
Affiliation(s)
- David J. Charboneau
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520, United States
| | - Emily L. Barth
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mycah R. Uehling
- Merck & Co., Inc., Discovery Chemistry, HTE and Lead Discovery Capabilities, Kenilworth, New Jersey 07033, United States
| | - Susan L. Zultanski
- Merck & Co., Inc., Department of Process Research and Development, Rahway, New Jersey 07065, United States
| |
Collapse
|
7
|
Talukder MM, Cue JMO, Miller JT, Gamage PL, Aslam A, McCandless GT, Biewer MC, Stefan MC. Ligand Steric Effects of α-Diimine Nickel(II) and Palladium(II) Complexes in the Suzuki-Miyaura Cross-Coupling Reaction. ACS OMEGA 2020; 5:24018-24032. [PMID: 32984724 PMCID: PMC7513363 DOI: 10.1021/acsomega.0c03415] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/21/2020] [Indexed: 05/13/2023]
Abstract
Nickel catalysts represent a low cost and environmentally friendly alternative to palladium-based catalytic systems for Suzuki-Miyaura cross-coupling (SMC) reactions. However, nickel catalysts have suffered from poor air, moisture, and thermal stabilities, especially at high catalyst loading, requiring controlled reaction conditions. In this report, we examine a family of mono- and dinuclear Ni(II) and Pd(II) complexes with a diverse and versatile α-diimine ligand environment for SMC reactions. To evaluate the ligand steric effects, including the bite angle in the reaction outcomes, the structural variation of the complexes was achieved by incorporating iminopyridine- and acenaphthene-based ligands. Moreover, the impact of substrate bulkiness was investigated by reacting various aryl bromides with phenylboronic acid, 2-naphthylboronic acid, and 9-phenanthracenylboronic acid. Yields were the best with the dinuclear complex, being nearly quantitative (93-99%), followed by the mononuclear complexes, giving yields of 78-98%. Consequently, α-diimine-based ligands have the potential to deliver Ni-based systems as sustainable catalysts in SMC.
Collapse
Affiliation(s)
- Md Muktadir Talukder
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson 75080, Texas, United States
| | - John Michael O. Cue
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson 75080, Texas, United States
| | - Justin T. Miller
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson 75080, Texas, United States
| | - Prabhath L. Gamage
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson 75080, Texas, United States
| | - Amina Aslam
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson 75080, Texas, United States
| | - Gregory T. McCandless
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson 75080, Texas, United States
| | - Michael C. Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson 75080, Texas, United States
| | - Mihaela C. Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson 75080, Texas, United States
| |
Collapse
|
8
|
Nattmann L, Cornella J. Ni(4-tBustb)3: A Robust 16-Electron Ni(0) Olefin Complex for Catalysis. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00485] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lukas Nattmann
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
9
|
Entz ED, Russell JEA, Hooker LV, Neufeldt SR. Small Phosphine Ligands Enable Selective Oxidative Addition of Ar-O over Ar-Cl Bonds at Nickel(0). J Am Chem Soc 2020; 142:15454-15463. [PMID: 32805116 PMCID: PMC8082739 DOI: 10.1021/jacs.0c06995] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Current methods for Suzuki-Miyaura couplings of nontriflate phenol derivatives are limited by their intolerance of halides including aryl chlorides. This is because Ni(0) and Pd(0) often undergo oxidative addition of organohalides at a similar or faster rate than most Ar-O bonds. DFT and stoichiometric oxidative addition studies demonstrate that small phosphines, in particular PMe3, are unique in promoting preferential reaction of Ni(0) with aryl tosylates and other C-O bonds in the presence of aryl chlorides. This selectivity was exploited in the first Ni-catalyzed C-O-selective Suzuki-Miyaura coupling of chlorinated phenol derivatives where the oxygen-containing leaving group is not a fluorinated sulfonate such as triflate. Computational studies suggest that the origin of divergent selectivity between PMe3 and other phosphines differs from prior examples of ligand-controlled chemodivergent cross-couplings. PMe3 effects selective reaction at tosylate due to both electronic and steric factors. A close interaction between nickel and a sulfonyl oxygen of tosylate during oxidative addition is critical to the observed selectivity.
Collapse
Affiliation(s)
- Emily D. Entz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - John E. A. Russell
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | | | - Sharon R. Neufeldt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
10
|
Pérez García PM, Darù A, Scheerder AR, Lutz M, Harvey JN, Moret ME. Oxidative Addition of Aryl Halides to a Triphosphine Ni(0) Center to Form Pentacoordinate Ni(II) Aryl Species. Organometallics 2020; 39:1139-1144. [PMID: 32362705 PMCID: PMC7189616 DOI: 10.1021/acs.organomet.0c00060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 11/29/2022]
Abstract
Oxidative addition of aryl halides to Ni(0) is a ubiquitous elementary step in cross-coupling and related reactions, usually producing a square-planar Ni(II)-aryl intermediate. Here we show that a triphosphine ligand supports oxidative addition at a tris-ligated Ni(0) center to cleanly form stable five-coordinate Ni(II)-aryl compounds. Kinetic and computational studies support a concerted, two-electron mechanism rather than radical halogen abstraction. These results support the idea that oxidative addition to triphosphine Ni(0) species may be more generally involved in Ni/phosphine catalytic systems.
Collapse
Affiliation(s)
- Pablo M Pérez García
- Utrecht University, Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Universiteitsweg 99, 3584 GC Utrecht, The Netherlands
| | - Andrea Darù
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Arthur R Scheerder
- Utrecht University, Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Universiteitsweg 99, 3584 GC Utrecht, The Netherlands
| | - Martin Lutz
- Utrecht University, Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jeremy N Harvey
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Marc-Etienne Moret
- Utrecht University, Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Universiteitsweg 99, 3584 GC Utrecht, The Netherlands
| |
Collapse
|
11
|
McGuire RT, Simon CM, Yadav AA, Ferguson MJ, Stradiotto M. Nickel‐Catalyzed Cross‐Coupling of Sulfonamides With (Hetero)aryl Chlorides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002392] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ryan T. McGuire
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Connor M. Simon
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Arun A. Yadav
- Paraza Pharma, Inc. 2525 Avenue Marie-Curie Montreal Quebec H4S 2E1 Canada
| | - Michael J. Ferguson
- X-Ray Crystallography Laboratory Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Mark Stradiotto
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| |
Collapse
|
12
|
McGuire RT, Simon CM, Yadav AA, Ferguson MJ, Stradiotto M. Nickel‐Catalyzed Cross‐Coupling of Sulfonamides With (Hetero)aryl Chlorides. Angew Chem Int Ed Engl 2020; 59:8952-8956. [DOI: 10.1002/anie.202002392] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ryan T. McGuire
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Connor M. Simon
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Arun A. Yadav
- Paraza Pharma, Inc. 2525 Avenue Marie-Curie Montreal Quebec H4S 2E1 Canada
| | - Michael J. Ferguson
- X-Ray Crystallography Laboratory Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Mark Stradiotto
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| |
Collapse
|
13
|
Liu RY, Dennis JM, Buchwald SL. The Quest for the Ideal Base: Rational Design of a Nickel Precatalyst Enables Mild, Homogeneous C-N Cross-Coupling. J Am Chem Soc 2020; 142:4500-4507. [PMID: 32040909 DOI: 10.1021/jacs.0c00286] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Palladium-catalyzed amination reactions using soluble organic bases have provided a solution to the many issues associated with heterogeneous reaction conditions. Still, homogeneous C-N cross-coupling approaches cannot yet employ bases as weak and economical as trialkylamines. Furthermore, organic base-mediated methods have not been developed for Ni(0/II) catalysis, despite some advantages of such systems over those employing Pd-based catalysts. We designed a new air-stable and easily prepared Ni(II) precatalyst bearing an electron-deficient bidentate phosphine ligand that enables the cross-coupling of aryl triflates with aryl amines using triethylamine (TEA) as base. The method is tolerant of sterically congested coupling partners, as well as those bearing base- and nucleophile-sensitive functional groups. With the aid of density functional theory (DFT) calculations, we determined that the electron-deficient auxiliary ligands decrease both the pKa of the Ni-bound amine and the barrier to reductive elimination from the resultant Ni(II)-amido complex. Moreover, we determined that the preclusion of Lewis acid-base complexation between the Ni catalyst and the base, due to steric factors, is important for avoiding catalyst inhibition.
Collapse
Affiliation(s)
- Richard Y Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joseph M Dennis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Cooper AK, Leonard DK, Bajo S, Burton PM, Nelson DJ. Aldehydes and ketones influence reactivity and selectivity in nickel-catalysed Suzuki-Miyaura reactions. Chem Sci 2020; 11:1905-1911. [PMID: 34123283 PMCID: PMC8148322 DOI: 10.1039/c9sc05444h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The energetically-favorable coordination of aldehydes and ketones - but not esters or amides - to Ni0 during Suzuki-Miyaura reactions can lead either to exquisite selectivity and enhanced reactivity, or to inhibition of the reaction. Aryl halides where the C-X bond is connected to the same π-system as an aldehyde or ketone undergo unexpectedly rapid oxidative addition to [Ni(COD)(dppf)] (1), and are selectively cross-coupled during competition reactions. When aldehydes and ketones are present in the form of exogenous additives, the cross-coupling reaction is inhibited to an extent that depends on the strength of the coordination of the pendant carbonyl group to Ni0. This work advances our understanding of how common functional groups interact with Ni0 catalysts and how these interactions affect workhorse catalytic reactions in academia and industry.
Collapse
Affiliation(s)
- Alasdair K Cooper
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL Scotland UK
| | - David K Leonard
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL Scotland UK
| | - Sonia Bajo
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL Scotland UK
| | - Paul M Burton
- Syngenta, Jealott's Hill International Research Centre Bracknell Berkshire RG42 6EY UK
| | - David J Nelson
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde 295 Cathedral Street Glasgow G1 1XL Scotland UK
| |
Collapse
|
15
|
|
16
|
Tröndle S, Bannenberg T, Freytag M, Jones PG, Tamm M. Transition-Metal Complexes of Diphosphanes Containing the η7-Cycloheptatrienyl-η5-Cyclopentadienyl Titanium (Troticene) Sandwich Moiety. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sabrina Tröndle
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Thomas Bannenberg
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Freytag
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Peter G. Jones
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
17
|
McGuire RT, Paffile JFJ, Zhou Y, Stradiotto M. Nickel-Catalyzed C–N Cross-Coupling of Ammonia, (Hetero)anilines, and Indoles with Activated (Hetero)aryl Chlorides Enabled by Ligand Design. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03715] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ryan T. McGuire
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Julia F. J. Paffile
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yuqiao Zhou
- X-Ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. 15000, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
18
|
Barth EL, Davis RM, Beromi MM, Walden AG, Balcells D, Brudvig GW, Dardir AH, Hazari N, Lant HMC, Mercado BQ, Peczak IL. Bis(dialkylphosphino)ferrocene-Ligated Nickel(II) Precatalysts for Suzuki-Miyaura Reactions of Aryl Carbonates. Organometallics 2019; 38:3377-3387. [PMID: 32565607 PMCID: PMC7304551 DOI: 10.1021/acs.organomet.9b00543] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aryl carbonates, a common protecting group in synthetic organic chemistry, are potentially valuable electrophiles in cross-coupling reactions. Here, after performing a thorough evaluation of different precatalysts, we demonstrate that (dcypf)Ni(2-ethylphenyl)(Br) (dcypf = 1,1-bis-(dicyclohexylphosphino)ferrocene) is an efficient precatalyst for Suzuki-Miyaura reactions using a variety of aryl carbonates as substrates. Mechanistic studies indicate that (dcypf)Ni(2-ethylphenyl)(Br), which contains a bidentate phosphine that binds in a trans geometry, is an effective precatalyst for these reactions for two reasons: (i) it rapidly forms the Ni(O) active species and (ii) it minimizes comproportionation reactions between the Ni(O) active species and both the unactivated Ni(II) precatalyst and on-cycle Ni(II) complexes to form catalytically inactive Ni(I) species. In contrast, the state of the art precatalyst (dppf)Ni(o-tolyl)(Cl) (dppf = 1,1-bis(diphenylphosphino)ferrocene), which contains a bidentate phosphine that binds in a cis geometry, forms Ni(I) species during activation and is essentially inactive for aryl carbonate couplings. Although the exact reasons on a molecular level why the dcypf system is more active than the dppf system are unclear, our results indicate that in general Ni catalysts supported by the dcypf ligand will give better performance for catalytic reactions involving substrates which undergo relatively slow oxidative addition, such as aryl carbonates.
Collapse
Affiliation(s)
- Emily L. Barth
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Ryan M. Davis
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Megan Mohadjer Beromi
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Andrew G. Walden
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - David Balcells
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Amira H. Dardir
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Hannah M. C. Lant
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Ian L. Peczak
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
19
|
West MJ, Watson AJB. Ni vs. Pd in Suzuki-Miyaura sp 2-sp 2 cross-coupling: a head-to-head study in a comparable precatalyst/ligand system. Org Biomol Chem 2019; 17:5055-5059. [PMID: 31049539 DOI: 10.1039/c9ob00561g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Suzuki-Miyaura reaction is a cornerstone method for sp2-sp2 cross-coupling in industry. There has been a concerted effort to enable the use of Ni catalysis as an alternative to Pd in order to mitigate cost and improve sustainability. Despite significant advances, ligand development for Ni-catalyzed Suzuki-Miyaura cross-coupling remains underdeveloped when compared to Pd and, as a consequence, ligands for Ni-catalyzed processes are typically taken from the Pd arena. In this study we evaluate the effect of using a similar Ni and Pd precatalyst based on a common bidentate ligand (dppf) in a head-to-head format for the most common type of biaryl couplings, establishing the practical implications of direct replacement of Pd with Ni, and identifying the potential origins of these observations in a mechanistic context.
Collapse
Affiliation(s)
- Matthew J West
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|