1
|
Rubel CZ, Cao Y, El-Hayek Ewing T, Laudadio G, Beutner GL, Wisniewski SR, Wu X, Baran PS, Vantourout JC, Engle KM. Electroreductive Synthesis of Nickel(0) Complexes. Angew Chem Int Ed Engl 2024; 63:e202311557. [PMID: 37984444 DOI: 10.1002/anie.202311557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Over the last fifty years, the use of nickel catalysts for facilitating organic transformations has skyrocketed. Nickel(0) sources act as useful precatalysts because they can enter a catalytic cycle through ligand exchange, without needing to undergo additional elementary steps. However, most Ni(0) precatalysts are synthesized with stoichiometric aluminum-hydride reductants, pyrophoric reagents that are not atom-economical and must be used at cryogenic temperatures. Here, we demonstrate that Ni(II) salts can be reduced on preparative scale using electrolysis to yield a variety of Ni(0) and Ni(II) complexes that are widely used as precatalysts in organic synthesis, including bis(1,5-cyclooctadiene)nickel(0) [Ni(COD)2 ]. This method overcomes the reproducibility issues of previously reported methods by standardizing the procedure, such that it can be performed anywhere in a robust manner. It can be transitioned to large scale through an electrochemical recirculating flow process and extended to an in situ reduction protocol to generate catalytic amounts of Ni(0) for organic transformations. We anticipate that this work will accelerate adoption of preparative electrochemistry for the synthesis of low-valent organometallic complexes in academia and industry.
Collapse
Affiliation(s)
- Camille Z Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICMBS, UMR 5246 du CNRS), Université Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France
| | - Yilin Cao
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tamara El-Hayek Ewing
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gabriele Laudadio
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gregory L Beutner
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Xiangyu Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Julien C Vantourout
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICMBS, UMR 5246 du CNRS), Université Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France
- Syngenta Crop Protection AG, Schaffauserstrasse, 4332, Stein, Switzerland
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Almansa A, Jardel D, Massip S, Tassaing T, Schatz C, Domergue J, Molton F, Duboc C, Vincent JM. Dual Photoredox Ni/Benzophenone Catalysis: A Study of the Ni II Precatalyst Photoreduction Step. J Org Chem 2022; 87:11172-11184. [PMID: 35946789 DOI: 10.1021/acs.joc.2c01467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The combination of NiIIX2 salts with a bipyridine-type ligand and aromatic carbonyl-based chromophores has emerged as a benchmark precatalytic system to efficiently conduct cross-couplings mediated by light. Mechanistic studies have led to two scenarios in which Ni0 is proposed as the catalytic species. Nonetheless, in none of these studies has a NiII to Ni0 photoreduction been evidenced. By exploiting UV-visible, nuclear magnetic resonance, resonance Raman, electron paramagnetic resonance, and dynamic light scattering spectroscopies and also transmission electron microscopy, we report that, when photolyzed by UVA in alcohols, the structurally defined [NiII2(μ-OH2)(dtbbpy)2(BPCO2)4] complex 1 integrating a benzophenone chromophore is reduced into a diamagnetic NiI dimer of the general formula [NiI2(dtbbpy)2(BPCO2)2]. In marked contrast, in THF, photolysis led to the fast formation of Ni0, which accumulates in the form of metallic ultrathin Ni nanosheets characterized by a mean size of ∼100 nm and a surface plasmon resonance at 505 nm. Finally, it is shown that 1 combined with UVA irradiation catalyzes cross-couplings, that is, C(sp3)-H arylation of THF and O-arylation of methanol. These results are discussed in light of the mechanisms proposed for these cross-couplings with a focus on the oxidation state of the catalytic species.
Collapse
Affiliation(s)
- Axel Almansa
- Institut des Sciences Moléculaires (ISM), CNRS UMR 5255, Univ. Bordeaux, 33405 Talence, France
| | - Damien Jardel
- Institut des Sciences Moléculaires (ISM), CNRS UMR 5255, Univ. Bordeaux, 33405 Talence, France
| | - Stéphane Massip
- European Institute of Chemistry and Biology (IECB), Univ. Bordeaux, 33600 Pessac, France
| | - Thierry Tassaing
- Institut des Sciences Moléculaires (ISM), CNRS UMR 5255, Univ. Bordeaux, 33405 Talence, France
| | - Christophe Schatz
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Univ. Bordeaux, 33607 Pessac Cedex, France
| | - Jérémy Domergue
- Département de Chimie Moléculaire (DCM) CNRS UMR 5250, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - Florian Molton
- Département de Chimie Moléculaire (DCM) CNRS UMR 5250, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - Carole Duboc
- Département de Chimie Moléculaire (DCM) CNRS UMR 5250, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - Jean-Marc Vincent
- Institut des Sciences Moléculaires (ISM), CNRS UMR 5255, Univ. Bordeaux, 33405 Talence, France
| |
Collapse
|
3
|
Ishida N, Ito M, Murakami M. Thermal Metathesis of C–C Single Bonds Induced by Steric Frustration. CHEM LETT 2022. [DOI: 10.1246/cl.220208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| | - Misato Ito
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| |
Collapse
|
4
|
Rawat A, Dhakla S, Lama P, Pal TK. Fixation of carbon dioxide to aryl/aromatic carboxylic acids. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101939] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Astakhov AV, Chernenko AY, Kutyrev VV, Ranny GS, Minyaev ME, Chernyshev VM, Ananikov VP. Selective Buchwald–Hartwig arylation of C-amino-1,2,4-triazoles and other coordinating aminoheterocycles enabled by bulky NHC ligands and TPEDO activator. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01832b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A facile method for selective N-(hetero)arylation of coordinating 3(5)-amino-1,2,4-triazoles under Pd/NHC catalysis using TPEDO as a new efficient Pd(ii) to Pd(0) reductant has been developed.
Collapse
Affiliation(s)
- Alexander V. Astakhov
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Andrey Yu. Chernenko
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Vadim V. Kutyrev
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Gleb S. Ranny
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Mikhail E. Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Victor M. Chernyshev
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
6
|
Huang Z, Zheng Y, Zhong M. Transmetalation Reactions of Aromatic Dilithionickelole: Synthesis of Heterobimetallic Complexes Featuring Metalloles as Diene Ligands. Chemistry 2021; 27:15967-15972. [PMID: 34569115 DOI: 10.1002/chem.202102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/08/2022]
Abstract
The aromatic metallole dianions are important metallaaromatic compounds because of their various reactivities and extensive synthetic applications. Herein we report the reactions of dilithionickelole with MgCl2 , EtAlCl2 , Cp*ScCl2 , Cp*LuCl2 and Pt(COD)Cl2 (COD=1,5-cyclooctadiene) affording a series of Ni/M heterobimetallic complexes of the general formula (η4 -C4 R4 M)Ni(COD), in which the metalloles act as diene ligands, as suggested by single-crystal X-ray, NMR and theoretical analyses. In these reactions, two electrons of the nickelole dianion transferred to Ni, representing different reactivity compared with main-group metallole dianions.
Collapse
Affiliation(s)
- Zhe Huang
- College of Chemistry, Peking University, Beijing, 100871, China
| | - Yu Zheng
- College of Chemistry, Peking University, Beijing, 100871, China
| | - Mingdong Zhong
- College of Chemistry, Peking University, Beijing, 100871, China.,Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| |
Collapse
|
7
|
Ishida N, Kamae Y, Ishizu K, Kamino Y, Naruse H, Murakami M. Sustainable System for Hydrogenation Exploiting Energy Derived from Solar Light. J Am Chem Soc 2021; 143:2217-2220. [DOI: 10.1021/jacs.0c13332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Yoshiki Kamae
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Keigo Ishizu
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Yuka Kamino
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Hiroshi Naruse
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| |
Collapse
|
8
|
Ishida N, Masuda Y, Imamura Y, Yamazaki K, Murakami M. Carboxylation of Benzylic and Aliphatic C-H Bonds with CO 2 Induced by Light/Ketone/Nickel. J Am Chem Soc 2019; 141:19611-19615. [PMID: 31775498 DOI: 10.1021/jacs.9b12529] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A photoinduced carboxylation reaction of benzylic and aliphatic C-H bonds with CO2 is developed. Toluene derivatives capture gaseous CO2 at the benzylic position to produce phenylacetic acid derivatives when irradiated with UV light in the presence of an aromatic ketone, a nickel complex, and potassium tert-butoxide. Cyclohexane reacts with CO2 to furnish cyclohexanecarboxylic acid under analogous reaction conditions. The present photoinduced carboxylation reaction provides a direct access from readily available hydrocarbons to the corresponding carboxylic acids with one carbon extension.
Collapse
Affiliation(s)
- Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry , Kyoto University , Katsura, Kyoto 615-8510 , Japan
| | - Yusuke Masuda
- Department of Synthetic Chemistry and Biological Chemistry , Kyoto University , Katsura, Kyoto 615-8510 , Japan
| | - Yuuya Imamura
- Department of Synthetic Chemistry and Biological Chemistry , Kyoto University , Katsura, Kyoto 615-8510 , Japan
| | - Katsushi Yamazaki
- Department of Synthetic Chemistry and Biological Chemistry , Kyoto University , Katsura, Kyoto 615-8510 , Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry , Kyoto University , Katsura, Kyoto 615-8510 , Japan
| |
Collapse
|
9
|
Ishida N, Masuda Y, Liao W, Murakami M. Photo-assisted Fixation of CO2 onto Aryl Bromides Producing Aromatic Esters. CHEM LETT 2019. [DOI: 10.1246/cl.190563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Yusuke Masuda
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Wenqing Liao
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| |
Collapse
|
10
|
Ishida N, Masuda Y, Sun F, Kamae Y, Murakami M. A Strained Vicinal Diol as a Reductant for Coupling of Organyl Halides. CHEM LETT 2019. [DOI: 10.1246/cl.190403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Yusuke Masuda
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Fangzhu Sun
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Yoshiki Kamae
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| |
Collapse
|