1
|
Price JS, Vargas-Baca I, Emslie DJH, Britten JF. Reactions of [(dmpe) 2MnH(C 2H 4)] with hydrogermanes to form germylene, germyl, hydrogermane, and germanide complexes. Dalton Trans 2023; 52:14880-14895. [PMID: 37795752 DOI: 10.1039/d3dt02437g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Reactions of the ethylene hydride complex trans-[(dmpe)2MnH(C2H4)] (1) with secondary hydrogermanes H2GeR2 at 55-60 °C afforded the base-free terminal germylene hydride complexes trans-[(dmpe)2MnH(GeR2)] (R = Ph; 2a, R = Et; 2b). Room temperature reactions of 2a or 2b with an excess of the primary hydrogermanes H3GeR' (R' = Ph or nBu) afforded trans-[(dmpe)2MnH(GeHR')] (R' = Ph; 3a, R' = nBu; 3b) in rapid equilibrium with small amounts of 2a/b, as well as the digermyl hydride complex mer-[(dmpe)2MnH(GeH2R')2] {R' = Ph (4a) or nBu (4b)} and the trans-hydrogermane germyl complex trans-[(dmpe)2Mn(GeH2R')(HGeH2R')] {R' = Ph (5a) or nBu (5b)}. Pure 3b was isolated from the reaction of 2b with H3GenBu, whereas 3a decomposed readily in solution in the absence of free H3GePh, and a pure bulk sample was not obtained. Reactions of 1 with H3GeR' (R' = Ph or nBu) also proceeded at 55-60 °C to afford mixtures of 3a/b, 4a/b and 5a/b, accompanied by remaining 1. However, upon continued heating to consume 1, various unidentified manganese-containing intermediates were formed, ultimately affording the germanide complex [{(dmpe)2MnH}2(μ-Ge)] (6) in 17-49% spectroscopic yield. Pure trans,trans-6 was isolated in 27% yield from the reaction of 1 with H3GenBu, and it is notable that this reaction involves stripping of all four substituents from the hydrogermane. Complexes 2a, 3a, and 6 were crystallographically characterized, and the nature of the MnGe bonding in these species (as well as in 2b and 3b) was probed computationally.
Collapse
Affiliation(s)
- Jeffrey S Price
- Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4M1, Canada.
| | - Ignacio Vargas-Baca
- Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4M1, Canada.
| | - David J H Emslie
- Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4M1, Canada.
| | - James F Britten
- McMaster Analytical X-ray Diffraction Facility (MAX), McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4M1, Canada
| |
Collapse
|
2
|
Cruz TFC, Veiros LF, Gomes PT. Hydrosilylation of Aldehydes and Ketones Catalyzed by a 2-Iminopyrrolyl Alkyl-Manganese(II) Complex. Inorg Chem 2021; 61:1195-1206. [PMID: 34962785 DOI: 10.1021/acs.inorgchem.1c03621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A well-defined and very active single-component manganese(II) catalyst system for the hydrosilylation of aldehydes and ketones is presented. First, the reaction of 5-(2,4,6-iPr3C6H2)-2-[N-(2,6-iPr2C6H3)formimino]pyrrolyl potassium (KL) and [MnCl2(Py)2] afforded the binuclear 2-iminopyrrolyl manganese(II) pyridine chloride complex [Mn2{κ2N,N'-5-(2,4,6-iPr3C6H2)-NC4H2-2-C(H)═N(2,6-iPr2C6H3)}2(Py)2(μ-Cl)2] 1. Subsequently, the alkylation reaction of complex 1 with LiCH2SiMe3 afforded the respective (trimethylsilyl)methyl-Mn(II) complex [Mn{κ2N,N'-5-(2,4,6-iPr3C6H2)-NC4H2-2-C(H)═N(2,6-iPr2C6H3)}(Py)CH2SiMe3] 2 in a good yield. Complexes 1 and 2 were characterized by elemental analysis, 1H NMR spectroscopy, Evans' method, FTIR spectroscopy, and single-crystal X-ray diffraction. While the crystal structure of complex 1 has been identified as a binuclear entity, in which the Mn(II) centers present pentacoordinate coordination spheres, that of complex 2 corresponds to a monomer with a distorted tetrahedral coordination geometry. Complex 2 proved to be a very active precatalyst for the atom-economic hydrosilylation of several aldehydes and ketones under very mild conditions, with a maximum turnover frequency of 95 min-1, via a silyl-Mn(II) mechanistic route, as asserted by a combination of experimental and theoretical efforts, the respective silanes were cleanly converted to the respective alcoholic products in high yields.
Collapse
Affiliation(s)
- Tiago F C Cruz
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Luís F Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro T Gomes
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
3
|
Evans KJ, Morton PA, Luz C, Miller C, Raine O, Lynam JM, Mansell SM. Rhodium Indenyl NHC and Fluorenyl-Tethered NHC Half-Sandwich Complexes: Synthesis, Structures and Applications in the Catalytic C-H Borylation of Arenes and Alkanes. Chemistry 2021; 27:17824-17833. [PMID: 34653269 PMCID: PMC9299238 DOI: 10.1002/chem.202102961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 01/11/2023]
Abstract
Indenyl (Ind) rhodium N-heterocyclic carbene (NHC) complexes [Rh(η5 -Ind)(NHC)(L)] were synthesised for 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene (SIPr) with L=C2 H4 (1), CO (2 a) and cyclooctene (COE; 3), for 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene (SIMes) with L=CO (2 b) and COE (4), and 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes) with L=CO (2 c) and COE (5). Reaction of SIPr with [Rh(Cp*)(C2 H4 )2 ] did not give the desired SIPr complex, thus demonstrating the "indenyl effect" in the synthesis of 1. Oxidative addition of HSi(OEt)3 to 3 proceeded under mild conditions to give the Rh silyl hydride complex [Rh(Ind){Si(OEt)3 }(H)(SIPr)] (6) with loss of COE. Tethered-fluorenyl NHC rhodium complexes [Rh{(η5 -C13 H8 )C2 H4 N(C)C2 Hx NR}(L)] (x=4, R=Dipp, L=C2 H4 : 11; L=COE: 12; L=CO: 13; R=Mes, L=COE: 14; L=CO: 15; x=2, R=Me, L=COE: 16; L=CO: 17) were synthesised in low yields (5-31 %) in comparison to good yields for the monodentate complexes (49-79 %). Compounds 3 and 1, which contain labile alkene ligands, were successful catalysts for the catalytic borylation of benzene with B2 pin2 (Bpin=pinacolboronate, 97 and 93 % PhBpin respectively with 5 mol % catalyst, 24 h, 80 °C), with SIPr giving a more active catalyst than SIMes or IMes. Fluorenyl-tethered NHC complexes were much less active as borylation catalysts, and the carbonyl complexes were inactive. The borylation of toluene, biphenyl, anisole and diphenyl ether proceeded to give meta substitutions as the major product, with smaller amounts of para substitution and almost no ortho product. The borylation of octane and decane with B2 pin2 at 120 and 140 °C, respectively, was monitored by 11 B NMR spectroscopy, which showed high conversions into octyl and decylBpin over 4-7 days, thus demonstrating catalysed sp3 C-H borylation with new piano stool rhodium indenyl complexes. Irradiation of the monodentate complexes with 400 or 420 nm light confirmed the ready dissociation of C2 H4 and COE ligands, whereas CO complexes were inert. Evidence for C-H bond activation in the alkyl groups of the NHC ligands was obtained.
Collapse
Affiliation(s)
- Kieren J. Evans
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Paul A. Morton
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Christian Luz
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Callum Miller
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Olivia Raine
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Jason M. Lynam
- Department of ChemistryUniversity of YorkHeslington, YorkYO10 5DDUK
| | | |
Collapse
|
4
|
Reactions of manganese silyl dihydride complexes with CO2. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Xie S, Dong Y, Du X, Fan Q, Yang H, Li X, Sun H, Fuhr O, Fenske D. Solvent-Free Hydrosilylation of Alkenes Catalyzed by Well-Defined Low-Valent Cobalt Catalysts. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shangqing Xie
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Yanhong Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Xinyu Du
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Haiquan Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dieter Fenske
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Dong Y, Zhang P, Fan Q, Du X, Xie S, Sun H, Li X, Fuhr O, Fenske D. The Effect of Substituents on the Formation of Silyl [PSiP] Pincer Cobalt(I) Complexes and Catalytic Application in Both Nitrogen Silylation and Alkene Hydrosilylation. Inorg Chem 2020; 59:16489-16499. [PMID: 33108179 DOI: 10.1021/acs.inorgchem.0c02332] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four different [PSiP]-pincer ligands L1-L4 ((2-Ph2PC6H4)2SiHR (R = H (L1) and Ph (L2)) and (2-iPr2PC6H4)2SiHR' (R' = Ph (L3) and H (L4)) were used to investigate the effect of substituents at P and/or Si atom of the [PSiP] pincer ligands on the formation of silyl cobalt(I) complexes by the reactions with CoMe(PMe3)4 via Si-H cleavage. Two penta-coordinated silyl cobalt(I) complexes, (2-Ph2PC6H4)2HSiCo(PMe3)2 (1) and (2-Ph2PC6H4)2PhSiCo(PMe3)2 (2), were obtained from the reactions of L1 and L2 with CoMe(PMe3)4, respectively. Under similar reaction conditions, a tetra-coordinated cobalt(I) complex (2-iPr2PC6H4)2PhSiCo(PMe3) (3) was isolated from the interaction of L3 with CoMe(PMe3)4. It was found that, only in the case of ligand L4, silyl dinitrogen cobalt(I) complex 4, [(2-iPr2PC6H4)2HSiCo(N2)(PMe3)], was formed. Our results indicate that the increasing of electron cloud density at the Co center is beneficial for the formation of a dinitrogen cobalt complex because the large electron density at Co center leads to the enhancement of the π-backbonding from cobalt to the coordinated N2. It was found that silyl dinitrogen cobalt(I) complex 4 is an effective catalyst for catalytic transformation of dinitrogen into silylamine. Among these four silyl cobalt(I) complexes, complex 1 is the best catalyst for hydrosilylation of alkenes with excellent regioselectivity. For aromatic alkenes, catalyst 1 provided Markovnikov products, while for aliphatic alkenes, anti-Markovnikov products could be obtained. Both catalytic reaction mechanisms were proposed and discussed. The molecular structures of complexes 1-4 were confirmed by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Yanhong Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Peng Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xinyu Du
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Shangqing Xie
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dieter Fenske
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Esteruelas MA, Martínez A, Oliván M, Oñate E. Kinetic Analysis and Sequencing of Si–H and C–H Bond Activation Reactions: Direct Silylation of Arenes Catalyzed by an Iridium-Polyhydride. J Am Chem Soc 2020; 142:19119-19131. [DOI: 10.1021/jacs.0c07578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Miguel A. Esteruelas
- Departamento de Quı́mica Inorgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), Centro de Innovación en Quı́mica Avanzada (ORFEO−CINQA), Universidad de Zaragoza−CSIC, 50009 Zaragoza, Spain
| | - Antonio Martínez
- Departamento de Quı́mica Inorgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), Centro de Innovación en Quı́mica Avanzada (ORFEO−CINQA), Universidad de Zaragoza−CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento de Quı́mica Inorgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), Centro de Innovación en Quı́mica Avanzada (ORFEO−CINQA), Universidad de Zaragoza−CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Quı́mica Inorgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea (ISQCH), Centro de Innovación en Quı́mica Avanzada (ORFEO−CINQA), Universidad de Zaragoza−CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
8
|
Price JS, Emslie DJH. Interconversion and reactivity of manganese silyl, silylene, and silene complexes. Chem Sci 2019; 10:10853-10869. [PMID: 32206252 PMCID: PMC7069235 DOI: 10.1039/c9sc04513a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/23/2019] [Indexed: 01/10/2023] Open
Abstract
Interconversions between manganese silylene and silene complexes are reported, including those involving the first spectroscopically observed silene complexes with an SiH substituent, and their involvement in ethylene hydrosilylation is discussed.
Manganese disilyl hydride complexes [(dmpe)2MnH(SiH2R)2] (4Ph: R = Ph, 4Bu: R = nBu) reacted with ethylene to form silene hydride complexes [(dmpe)2MnH(RHSi
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
CHMe)] (6Ph,H: R = Ph, 6Bu,H: R = nBu). Compounds 6R,H reacted with a second equivalent of ethylene to generate [(dmpe)2MnH(REtSi
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
CHMe)] (6Ph,Et: R = Ph, 6Bu,Et: R = nBu), resulting from apparent ethylene insertion into the silene Si–H bond. Furthermore, in the absence of ethylene, silene complex 6Bu,H slowly isomerized to the silylene hydride complex [(dmpe)2MnH(
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
SiEtnBu)] (3Bu,Et). Reactions of 4R with ethylene likely proceed via low-coordinate silyl {[(dmpe)2Mn(SiH2R)] (2Ph: R = Ph, 2Bu: R = nBu)} or silylene hydride {[(dmpe)2MnH(
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
SiHR)] (3Ph,H: R = Ph, 3Bu,H: R = nBu)} intermediates accessed from 4R by H3SiR elimination. DFT calculations and high temperature NMR spectra support the accessibility of these intermediates, and reactions of 4R with isonitriles or N-heterocyclic carbenes yielded the silyl isonitrile complexes [(dmpe)2Mn(SiH2R)(CNR′)] (7a–d: R = Ph or nBu; R′ = o-xylyl or tBu), and NHC-stabilized silylene hydride complexes [(dmpe)2MnH{
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
SiHR(NHC)}] (8a–d: R = Ph or nBu; NHC = 1,3-diisopropylimidazolin-2-ylidene or 1,3,4,5-tetramethyl-4-imidazolin-2-ylidene), respectively, all of which were crystallographically characterized. Silyl, silylene and silene complexes in this work were accessed via reactions of [(dmpe)2MnH(C2H4)] (1) with hydrosilanes, in some cases followed by ethylene. Therefore, ethylene (C2H4 and C2D4) hydrosilylation was investigated using [(dmpe)2MnH(C2H4)] (1) as a pre-catalyst, resulting in stepwise conversion of primary to secondary to tertiary hydrosilanes. Various catalytically active manganese-containing species were observed during catalysis, including silylene and silene complexes, and a catalytic cycle is proposed.
Collapse
Affiliation(s)
- Jeffrey S Price
- Department of Chemistry , McMaster University , 1280 Main Street West , Hamilton , Ontario L8S 4M1 , Canada .
| | - David J H Emslie
- Department of Chemistry , McMaster University , 1280 Main Street West , Hamilton , Ontario L8S 4M1 , Canada .
| |
Collapse
|