1
|
Yang L, Yi M, Wu X, Lu Y, Zhang Z. Dirhodium(II)/XantPhos Catalyzed Synthesis of β-(E)-Vinylsilanes via Hydrosilylation and Isomerization from Alkynes. Chemistry 2024; 30:e202402406. [PMID: 39187432 DOI: 10.1002/chem.202402406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
A concise hydrosilylation of alkynes for synthesizing β-(E)-vinylsilanes catalyzed by dirhodium(II)/XantPhos has been developed. In this reaction, β-(E)-vinylsilanes were generated from the isomerization of β-(Z)-vinylsilanes catalyzed by dirhodium(II) hydride species rather than the direct insertion of triple bond into M-H or M-Si bond (traditional Chalk-Harrod mechanism or modified Chalk-Harrod mechanism). The hydrosilylation displayed a broad substrate scope for alkynes and tertiary silanes, tolerating diverse functional groups including halides, nitriles, amines, esters, and heterocycles.
Collapse
Affiliation(s)
- Liqun Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mingjun Yi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoyu Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
2
|
Chindan B, Syam A, Mahendran H, Rasappan R. Synthesis of α-Vinyltrialkoxysilanes via Nickel-Mediated Cross-Electrophile Coupling Reactions. Org Lett 2023; 25:7751-7756. [PMID: 37844143 DOI: 10.1021/acs.orglett.3c03206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Vinyltrialkoxysilanes are indispensable for organic synthesis, particularly cross-coupling reactions. Hydrosilylation of alkynes inevitably yields α- and β-isomers of vinyltrialkoxysilanes even with complex ligands and catalysts, limiting its usage in organic synthesis. We report the synthesis of α-vinyltrialkoxysilanes via cross-electrophile C(sp2)-C(sp2) coupling of bromoalkenes. The method is quite compatible with functional groups under milder reaction conditions. The gram-scale synthesis of most substrates is impressive. The intermediacy of vinyl iodide and radical escape rebound path are supported by mechanistic studies.
Collapse
Affiliation(s)
- Bincy Chindan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Anagha Syam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Hariharan Mahendran
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
3
|
Tan C, Tinnermann H, Wee V, Tan S, Sung S, Wang Q, Young RD. Synthesis of bimetallic rhodium phosphinine complexes with enhanced catalytic activity towards alkyne hydrosilylation. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
van Vuuren E, Malan FP, Cordier W, Nell M, Landman M. Self-Isomerized–Cyclometalated Rhodium NHC Complexes as Active Catalysts in the Hydrosilylation of Internal Alkynes. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Estefan van Vuuren
- Department of Chemistry, University of Pretoria, Hatfield, Pretoria, South Africa 0002
| | - Frederick P. Malan
- Department of Chemistry, University of Pretoria, Hatfield, Pretoria, South Africa 0002
| | - Werner Cordier
- Department of Pharmacology, University of Pretoria, Arcadia, Pretoria, South Africa 0007
| | - Margo Nell
- Department of Pharmacology, University of Pretoria, Arcadia, Pretoria, South Africa 0007
| | - Marilé Landman
- Department of Chemistry, University of Pretoria, Hatfield, Pretoria, South Africa 0002
| |
Collapse
|
5
|
Clapson ML, Kirkland JK, Piers WE, Ess DH, Gelfand B, Lin JB. Carbene Character in a Series of Neutral PCcarbeneP Cobalt(I) Complexes: Radical Carbenes versus Nucleophilic Carbenes. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marissa L. Clapson
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4 Canada
| | - Justin K. Kirkland
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Warren E. Piers
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4 Canada
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Benjamin Gelfand
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4 Canada
| | - Jian-Bin Lin
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4 Canada
| |
Collapse
|
6
|
Tan C, Tinnermann H, Sung S, Kat LH, Young RD. Nonpalindromic Rhodium PCcarbeneP Pincer Complexes Featuring Electron-Deficient Phosphino Substituents. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Clarence Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Hendrik Tinnermann
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Simon Sung
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Li Heng Kat
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Rowan D. Young
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
7
|
Feichtner K, Scharf LT, Scherpf T, Mallick B, Boysen N, Gessner VH. Tuning Ruthenium Carbene Complexes for Selective P-H Activation through Metal-Ligand Cooperation. Chemistry 2021; 27:17351-17360. [PMID: 34705314 PMCID: PMC9299219 DOI: 10.1002/chem.202103151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 11/14/2022]
Abstract
The use of iminophosphoryl-tethered ruthenium carbene complexes to activate secondary phosphine P-H bonds is reported. Complexes of type [(p-cymene)-RuC(SO2 Ph)(PPh2 NR)] (with R = SiMe3 or 4-C6 H4 -NO2 ) were found to exhibit different reactivities depending on the electronics of the applied phosphine and the substituent at the iminophosphoryl moiety. Hence, the electron-rich silyl-substituted complex undergoes cyclometallation or shift of the imine moiety after cooperative activation of the P-H bond across the M=C linkage, depending on the electronics of the applied phosphine. Deuteration experiments and computational studies proved that cyclometallation is initiated by the activation process at the M=C bond and triggered by the high electron density at the metal in the phosphido intermediates. Consistently, replacement of the trimethylsilyl (TMS) group by the electron-withdrawing 4-nitrophenyl substituent allowed the selective cooperative P-H activation to form stable activation products.
Collapse
Affiliation(s)
- Kai‐Stephan Feichtner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Lennart T. Scharf
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Thorsten Scherpf
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Bert Mallick
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Nils Boysen
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| |
Collapse
|
8
|
|
9
|
Wang Q, Manzano RA, Tinnermann H, Sung S, Leforestier B, Krämer T, Young RD. Access to and Reactivity of Fe
0
, Fe
−I
, Fe
I
, and Fe
II
PC
carbene
P Pincer Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Qingyang Wang
- Department of Chemistry National University of Singapore Singapore
| | | | | | - Simon Sung
- Department of Chemistry National University of Singapore Singapore
| | - Baptiste Leforestier
- Department of Chemistry University of Warwick UK
- Department of Chemistry Maynooth University Ireland
| | | | - Rowan D. Young
- Department of Chemistry National University of Singapore Singapore
| |
Collapse
|
10
|
Wang Q, Manzano RA, Tinnermann H, Sung S, Leforestier B, Krämer T, Young RD. Access to and Reactivity of Fe 0 , Fe -I , Fe I , and Fe II PC carbene P Pincer Complexes. Angew Chem Int Ed Engl 2021; 60:18168-18177. [PMID: 34145715 DOI: 10.1002/anie.202104130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/17/2021] [Indexed: 12/11/2022]
Abstract
Despite their promising metal-ligand cooperative reactivity, PCcarbene P pincer ligands are rarely reported for first-row transition-metal centres. Using a dehydration methodology, we report access to an Fe0 PCcarbene P pincer complex (1) that proceeds via an isolated α-hydroxylalkyl hydrido complex (3). Reversible carbonyl migration to the carbene position in 1 is found to allow coordination chemistry and E-H bond addition (E=H, B, Cl) across the iron-carbene linkage, representing a unique mechanism for metal-ligand cooperativity. The PCcarbene P pincer ligand is also found to stabilize formal FeII , FeI , and Fe-I oxidation states, as demonstrated with synthesis and characterization of the complexes [11-X][BArF 20 ] (X=Br, I), 12, and K[13]. Compound K[13] is found to be highly reactive, and abstracts hydrogen from a range of aliphatic C-H sources. Computational analysis by DFT suggests that the formal FeI and Fe-I complexes contain significant carbene radical character. The ability of the PCcarbene P ligand scaffold to partake in metal-ligand cooperativity and to support a range of iron oxidation states renders it as potentially useful in many catalytic applications.
Collapse
Affiliation(s)
- Qingyang Wang
- Department of Chemistry, National University of Singapore, Singapore
| | - Richard A Manzano
- Department of Chemistry, National University of Singapore, Singapore
| | | | - Simon Sung
- Department of Chemistry, National University of Singapore, Singapore
| | - Baptiste Leforestier
- Department of Chemistry, University of Warwick, UK.,Department of Chemistry, Maynooth University, Ireland
| | - Tobias Krämer
- Department of Chemistry, Maynooth University, Ireland
| | - Rowan D Young
- Department of Chemistry, National University of Singapore, Singapore
| |
Collapse
|
11
|
Okamoto K, Sasakura K, Funasaka S, Watanabe H, Suezaki M, Ohe K. Properties and Reactivities of Zwitterionic Platinum(II)-ate Complexes Generated by Transforming Coordination of an Alkyne–Bisphosphine Ligand. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kazuhiro Okamoto
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kohei Sasakura
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Satoshi Funasaka
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiiro Watanabe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masahiro Suezaki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
12
|
Lu W, Li C, Wu X, Xie X, Zhang Z. [Rh(COD)Cl]2/PPh3-Catalyzed Dehydrogenative Silylation of Styrene Derivatives with NBE as a Hydrogen Acceptor. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Wenkui Lu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Chengyang Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Xiaoyu Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Xiaomin Xie
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Zhaoguo Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
13
|
Tinnermann H, Young RD. C−N, C−S and S−S Bond Cleavage by Rhodium PC
carbene
P Pincer Complexes. Chem Asian J 2020; 15:2873-2878. [DOI: 10.1002/asia.202000515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/09/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Hendrik Tinnermann
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Rowan D. Young
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
14
|
Tinnermann H, Sung S, Cala BA, Gill HJ, Young RD. Catalytic Deoxygenation of Amine and Pyridine N-Oxides Using Rhodium PCcarbeneP Pincer Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hendrik Tinnermann
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Simon Sung
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Beatrice A. Cala
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Hashir J. Gill
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Rowan D. Young
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|