1
|
Yang W, Filonenko GA, Pidko EA. Performance of homogeneous catalysts viewed in dynamics. Chem Commun (Camb) 2023; 59:1757-1768. [PMID: 36683401 PMCID: PMC9910057 DOI: 10.1039/d2cc05625a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Effective assessment of catalytic performance is the foundation for the rational design and development of new catalysts with superior performance. The ubiquitous screening/optimization studies use reaction yields as the sole performance metric in an approach that often neglects the complexity of the catalytic system and intrinsic reactivities of the catalysts. Using an example of hydrogenation catalysis, we examine the transient behavior of catalysts that are often encountered in activation, deactivation and catalytic turnover processes. Each of these processes and the reaction environment in which they take place are gradually shown to determine the real-time catalyst speciation and the resulting kinetics of the overall catalytic reaction. As a result, the catalyst performance becomes a complex and time-dependent metric defined by multiple descriptors apart from the reaction yield. This behaviour is not limited to hydrogenation catalysis and affects various catalytic transformations. In this feature article, we discuss these catalytically relevant descriptors in an attempt to arrive at a comprehensive depiction of catalytic performance.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Georgy A. Filonenko
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 92629 HZDelftThe Netherlands
| | - Evgeny A. Pidko
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
2
|
Hafeez J, Bilal M, Rasool N, Hafeez U, Adnan Ali Shah S, Imran S, Amiruddin Zakaria Z. Synthesis of Ruthenium complexes and their catalytic applications: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
3
|
Ataya M, Hasanayn F. Calculations on the non-classical β-hydride elimination observed in trans-(H)(OMe)-Ir(Ph)(PMe 3) 3: possible production and reaction of methyl formate. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The octahedral trans hydrido-alkoxide complex trans-(H)(OMe)-Ir(Ph)(PMe3)3 (2-OCH3) was prepared by Milstein and coworkers by addition of methanol to Ir(Ph)(PMe3)3 (1). 2-OCH3 was discovered to undergo a methanol catalyzed outer-sphere carbonyl de-insertion in which a vacant coordination site is not required. The reaction yields the octahedral trans dihydride complex trans-(H)2-Ir(Ph)(PMe3)3 (2-H) as a kinetic product along with formaldehyde derivatives reported as [CH2=O]x. We investigate the mechanism and products of this reaction using density functional theory. The de-insertion transition state has an ion-pair character leading to a high barrier in benzene continuum: ΔG ‡ = 27.9 kcal/mol. Adding one methanol molecule by H-bonding to the alkoxide of 2-OCH3 lowers the barrier to 22.7 kcal/mol. When the calculations are conducted in a methanol continuum, the barrier drops to 8.8 kcal/mol. However, the thermodynamics of de-insertion are endergonic by near 5 kcal/mol in both benzene and methanol. The calculations identify a low energy outer-sphere H/OMe metathesis pathway that transforms the formaldehyde and another 2-OCH3 molecule directly into a second 2-H complex and methyl formate. Likewise, a second H/OCH3 metathesis reaction interconverting methyl formate and 2-OCH3 into 2-H and dimethyl carbonate is computed to be exergonic and kinetically facile. These results imply that the production of methyl formate and dimethyl carbonate from 2-OCH3 is plausible in this system. The net transformation from the square planar 1 and methanol to 2-H and either methyl formate or dimethyl carbonate would represent a unique stoichiometric dehydrogenative coupling reaction taking place at room temperature by an outer-sphere mechanism.
Collapse
Affiliation(s)
- Mohamad Ataya
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
4
|
Pandey MK, Choudhury J. Ester Hydrogenation with Bifunctional Metal-NHC Catalysts: Recent Advances. ACS OMEGA 2020; 5:30775-30786. [PMID: 33324787 PMCID: PMC7726748 DOI: 10.1021/acsomega.0c04819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Hydrogenation of ester to alcohol is an essential reaction in organic chemistry due to its importance in the production of a wide range of bulk and fine chemicals. There are a number of homogeneous and heterogeneous catalyst systems reported in the literature for this useful reaction. Mostly, phosphine-based bifunctional catalysts, owing to their ability to show metal-ligand cooperation during catalytic reactions, are extensively used in these reactions. However, phosphine-based catalysts are difficult to synthesize and are also highly air- and moisture-sensitive, restricting broad applications. In contrast, N-heterocyclic carbenes (NHCs) can be easily synthesized, and their steric and electronic attributes can be fine-tuned easily. In recent times, many phosphine ligands have been replaced by potent σ-donor NHCs, and the resulting bifunctional metal-ligand systems are proven to be very efficient in several important catalytic reactions. This mini-review focuses the recent advances mainly on bifunctional metal-NHC complexes utilized as (pre)catalysts in ester hydrogenation reactions.
Collapse
|
5
|
Abstract
Our planet urgently needs sustainable solutions to alleviate the anthropogenic global warming and climate change. Homogeneous catalysis has the potential to play a fundamental role in this process, providing novel, efficient, and at the same time eco-friendly routes for both chemicals and energy production. In particular, pincer-type ligation shows promising properties in terms of long-term stability and selectivity, as well as allowing for mild reaction conditions and low catalyst loading. Indeed, pincer complexes have been applied to a plethora of sustainable chemical processes, such as hydrogen release, CO2 capture and conversion, N2 fixation, and biomass valorization for the synthesis of high-value chemicals and fuels. In this work, we show the main advances of the last five years in the use of pincer transition metal complexes in key catalytic processes aiming for a more sustainable chemical and energy production.
Collapse
|
6
|
Tindall DJ, Menche M, Schelwies M, Paciello RA, Schäfer A, Comba P, Rominger F, Hashmi ASK, Schaub T. Ru0 or RuII: A Study on Stabilizing the “Activated” Form of Ru-PNP Complexes with Additional Phosphine Ligands in Alcohol Dehydrogenation and Ester Hydrogenation. Inorg Chem 2020; 59:5099-5115. [DOI: 10.1021/acs.inorgchem.0c00337] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Daniel J. Tindall
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany
| | - Maximilian Menche
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany
- BASF SE, Quantum Chemistry & Molecular Simulation, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Mathias Schelwies
- BASF SE, Organic Synthesis, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Rocco A. Paciello
- BASF SE, Organic Synthesis, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Ansgar Schäfer
- BASF SE, Quantum Chemistry & Molecular Simulation, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Peter Comba
- Institute of Inorganic Chemistry & Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 275, D-69120 Heidelberg, Germany
| | - Frank Rominger
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - A. Stephen K. Hashmi
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany
- BASF SE, Organic Synthesis, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| |
Collapse
|
7
|
He T, Buttner JC, Reynolds EF, Pham J, Malek JC, Keith JM, Chianese AR. Dehydroalkylative Activation of CNN- and PNN-Pincer Ruthenium Catalysts for Ester Hydrogenation. J Am Chem Soc 2019; 141:17404-17413. [PMID: 31589441 DOI: 10.1021/jacs.9b09326] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ruthenium-pincer complexes bearing CNN- and PNN-pincer ligands with diethyl- or diisopropylamino side groups, which have previously been reported to be active precatalysts for ester hydrogenation, undergo dehydroalkylation on heating in the presence of tricyclohexylphosphine to release ethane or propane, giving five-coordinate ruthenium(0) complexes containing a nascent imine functional group. Ethane or propane is also released under the conditions of catalytic ester hydrogenation, and time-course studies show that this release is concomitant with the onset of catalysis. A new PNN-pincer ruthenium(0)-imine complex is a highly active catalyst for ester hydrogenation at room temperature, giving up to 15 500 turnovers with no added base. This complex was shown to react reversibly at room temperature with two equivalents of hydrogen to give a ruthenium(II)-dihydride complex, where the imine functionality has been hydrogenated to give a protic amine side group. These observations have potentially broad implications for the identities of catalytic intermediates in ester hydrogenation and related transformations.
Collapse
Affiliation(s)
- Tianyi He
- Department of Chemistry , Colgate University , 13 Oak Drive , Hamilton , New York 13346 , United States
| | - John C Buttner
- Department of Chemistry , Colgate University , 13 Oak Drive , Hamilton , New York 13346 , United States
| | - Eamon F Reynolds
- Department of Chemistry , Colgate University , 13 Oak Drive , Hamilton , New York 13346 , United States
| | - John Pham
- Department of Chemistry , Colgate University , 13 Oak Drive , Hamilton , New York 13346 , United States
| | - Jack C Malek
- Department of Chemistry , Colgate University , 13 Oak Drive , Hamilton , New York 13346 , United States
| | - Jason M Keith
- Department of Chemistry , Colgate University , 13 Oak Drive , Hamilton , New York 13346 , United States
| | - Anthony R Chianese
- Department of Chemistry , Colgate University , 13 Oak Drive , Hamilton , New York 13346 , United States
| |
Collapse
|