1
|
Ding X, Mu Y, Zhu Y, Guo X, Liu K, Sun L, Liu Z. Mechanistic insight into the carboxylic derivatives formation from CO2 and ethylene over iron(0)-based catalyst. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
2
|
Nowicki M, Zaranek M, Grzelak M, Pawluć P, Hoffmann M. Mechanism of Silylation of Vinyl Arenes by Hydrodisiloxanes Driven by Stoichiometric Amounts of Sodium Triethylborohydride-A Combined DFT and Experimental Study. Int J Mol Sci 2023; 24:ijms24054924. [PMID: 36902355 PMCID: PMC10003527 DOI: 10.3390/ijms24054924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The reactions of vinyl arenes with hydrodisiloxanes in the presence of sodium triethylborohydride were studied using experimental and computational methods. The expected hydrosilylation products were not detected because triethylborohydrides did not exhibit the catalytic activity observed in previous studies; instead, the product of formal silylation with dimethylsilane was identified, and triethylborohydride was consumed in stoichiometric amounts. In this article, the mechanism of the reaction is described in detail, with due consideration given to the conformational freedom of important intermediates and the two-dimensional curvature of the potential energy hypersurface cross sections. A simple way to reestablish the catalytic character of the transformation was identified and explained with reference to its mechanism. The reaction presented here is an example of the application of a simple transition-metal-free catalyst in the synthesis of silylation products, with flammable gaseous reagents replaced by a more convenient silane surrogate.
Collapse
Affiliation(s)
- Mateusz Nowicki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Maciej Zaranek
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Magdalena Grzelak
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Piotr Pawluć
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Marcin Hoffmann
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Correspondence:
| |
Collapse
|
3
|
McWilliams SF, Mercado BQ, MacLeod KC, Fataftah MS, Tarrago M, Wang X, Bill E, Ye S, Holland PL. Dynamic effects on ligand field from rapid hydride motion in an iron(ii) dimer with an S = 3 ground state. Chem Sci 2023; 14:2303-2312. [PMID: 36873832 PMCID: PMC9977447 DOI: 10.1039/d2sc06412j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 02/11/2023] Open
Abstract
Hydride complexes are important in catalysis and in iron-sulfur enzymes like nitrogenase, but the impact of hydride mobility on local iron spin states has been underexplored. We describe studies of a dimeric diiron(ii) hydride complex using X-ray and neutron crystallography, Mössbauer spectroscopy, magnetism, DFT, and ab initio calculations, which give insight into the dynamics and the electronic structure brought about by the hydrides. The two iron sites in the dimer have differing square-planar (intermediate-spin) and tetrahedral (high-spin) iron geometries, which are distinguished only by the hydride positions. These are strongly coupled to give an S total = 3 ground state with substantial magnetic anisotropy, and the merits of both localized and delocalized spin models are discussed. The dynamic nature of the sites is dependent on crystal packing, as shown by changes during a phase transformation that occurs near 160 K. The change in dynamics of the hydride motion leads to insight into its influence on the electronic structure. The accumulated data indicate that the two sites can trade geometries by rotating the hydrides, at a rate that is rapid above the phase transition temperature but slow below it. This small movement of the hydrides causes large changes in the ligand field because they are strong-field ligands. This suggests that hydrides could be useful in catalysis not only due to their reactivity, but also due to their ability to rapidly modulate the local electronic structure and spin states at metal sites.
Collapse
Affiliation(s)
| | | | - K Cory MacLeod
- Department of Chemistry, Yale University New Haven Connecticut USA
| | - Majed S Fataftah
- Department of Chemistry, Yale University New Haven Connecticut USA
| | - Maxime Tarrago
- Max Planck Institute for Chemical Energy Conversion Mülheim an der Ruhr Germany
| | - Xiaoping Wang
- Neutron Sciences Directorate, Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion Mülheim an der Ruhr Germany
| | - Shengfa Ye
- Max Planck Institute for Chemical Energy Conversion Mülheim an der Ruhr Germany
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
| | | |
Collapse
|
4
|
Matsubara K, Yamada Y, Iwasaki H, Ikeda H, Kanetsugu Y, Kawata S, Koga Y. A 1,2,3-triazole-derived pincer-type mesoionic carbene complex of iron(II): carbonyl elimination and hydrosilylation of aromatic aldehydes via the concerted reaction with hydrosilane and a base. Dalton Trans 2023; 52:572-582. [PMID: 36537300 DOI: 10.1039/d2dt03617g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iron complexes bearing 1,2,3-triazol-5-ylidene were synthesized and applied to the reaction with hydrosilane and homogeneous catalytic hydrosilylation of aromatic ketones and aldehydes. Addition of a free carbene to a solution of Fe(CO)4Br2 yielded an octahedral, diamagnetic and cationic iron(II) complex [Fe(1,2,3-triazolylidene)(CO)2Br]+. Pyrolysis of the dicarbonyl complex eliminated the two CO ligands to form a paramagnetic four-coordinate complex. A theoretical study using DFT calculations indicated that the spin state changed from singlet to quintet during ligand elimination. Investigations of the successful hydrosilylation of acetophenone and benzaldehyde derivatives using MIC-iron(II) bromide suggested the importance of the base for efficient conversion in the catalytic process. The bromide-to-hydride exchange reaction, transmetallation, of MIC-iron(II) bromide in the presence of KOtBu and HSi(OEt)3 which could occur in the initial process of hydrosilylation was proposed, and supported by a theoretical study.
Collapse
Affiliation(s)
- Kouki Matsubara
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| | - Yuji Yamada
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| | - Haruka Iwasaki
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| | - Hayao Ikeda
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| | - Yuki Kanetsugu
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| | - Satoshi Kawata
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| | - Yuji Koga
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan.
| |
Collapse
|
5
|
Gong Y, Mou Q, Peng D, Wang F, Qin J, Qin J, Ding Y. New insight into the mechanism of Pt(0)-catalyzed hydrosilylation reaction of (CH 3) 3SiH with CH 2CHSi(CH 3) 3. J Mol Graph Model 2022; 117:108294. [PMID: 35969936 DOI: 10.1016/j.jmgm.2022.108294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
The non-catalytic hydrosilylation reaction has much high activation energy due to large differences in the energy of HOMO-LUMO pairing and restriction of the orbital symmetry overlap. For Pt(0)-catalytic hydrosilylation, the electronic structure of Me3SiH has been modified by the oxidative addition of Pt(0). It not only narrows down the energy differences between the bonding orbitals but also improves the orbital overlap symmetry, leading to the effective decrease of the activation energy. The trouble for the Pt(0)-catalytic hydrosilylation is the formation of the majority of the Pt-containing intermediates. Because they are fallen into the deep potential-energy, the reductive eliminations are energetically prohibitive, which is the essence of Pt-contamination. The reductive elimination can be achieved with the ligand exchange method, and the energy barrier can be tuned by suitable ligands.
Collapse
Affiliation(s)
- Yingying Gong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Qiuhong Mou
- Advanced Materials Institute, Shandong Academy of Science, Jinan, Shandong, 250014, PR China
| | - Dan Peng
- Advanced Materials Institute, Shandong Academy of Science, Jinan, Shandong, 250014, PR China
| | - Feng Wang
- Advanced Materials Institute, Shandong Academy of Science, Jinan, Shandong, 250014, PR China
| | - Jining Qin
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Jiaqi Qin
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Yunqiao Ding
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China.
| |
Collapse
|
6
|
Luo J, Cui C, Xiao Z, Zhong W, Lu C, Jiang X, Li X, Liu X. Iron(0) tricarbonyl η 4-1-azadiene complexes and their catalytic performance in the hydroboration of ketones, aldehydes and aldimines via a non-iron hydride pathway. Dalton Trans 2022; 51:11558-11566. [PMID: 35848404 DOI: 10.1039/d2dt01673g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six iron(0) tricarbonyl complexes (1a-f) with a η4-1-azadiene moiety were prepared and their performance in the hydroboration of unsaturated organic compounds was investigated. All the complexes exhibit catalytic activity towards hydroboration of ketones, aldehydes and aldimines with pinacolborane (HBpin) as a hydride source to lead to secondary alcohols, primary alcohols, and secondary amines, respectively, after hydrolysis of the hydroboration products. Of the iron(0) tricarbonyl complexes, complex 1e is the most robust one and was employed throughout the catalytic investigation. Its preference towards the three types of substrates is as follows: aldimines > aldehydes ≫ ketones. In total, 24 substrates were examined for the catalytic hydroboration reactivity and generally, isolation yields ranging from 40% to 95% were achieved. Mechanistic investigation suggests that the catalytic hydroboration of the substrates proceeds via intramolecular hydride transfer without going through an Fe-H intermediate. As indicated by 1H NMR spectroscopic monitoring, the substrates and the borane agent bind to the iron centre and the imine N atom, respectively, which facilitates the hydride transfer by activating the B-H bond and polarizing the double bond of the substrates.
Collapse
Affiliation(s)
- Jiabin Luo
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China. .,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Chuanguo Cui
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China. .,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Zhiyin Xiao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Wei Zhong
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Chunxin Lu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xiujuan Jiang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xueming Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
| | - Xiaoming Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
7
|
Zheng L, Yan Z, Ren Q. DFT study on the mechanisms of α‐C cross coupling of π‐bonds catalyzed by iron complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lin Zheng
- Department of Chemistry, Innovative Drug Research Center Shanghai University Shanghai China
| | - Zhengwei Yan
- Department of Chemistry, Innovative Drug Research Center Shanghai University Shanghai China
| | - Qinghua Ren
- Department of Chemistry, Innovative Drug Research Center Shanghai University Shanghai China
| |
Collapse
|
8
|
Kamitani M. Chemically robust and readily available quinoline-based PNN iron complexes: application in C-H borylation of arenes. Chem Commun (Camb) 2021; 57:13246-13258. [PMID: 34812447 DOI: 10.1039/d1cc04877e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iron catalysts have been used for over a century to produce ammonia industrially. However, the use of iron catalysts generally remained quite limited until relatively recently, when the abundance and low toxicity of iron spurred the development of a variety of iron catalysts. Despite the fact that iron catalysts are being developed as alternatives to precious metal catalysts, their reactivities and stabilities are quite different because of their unique electronic structures. In this context, our group previously developed a new family of quinoline-based PNN pincer-type ligands for low- to mid-valent iron catalysts. These chemically robust PNN ligands provide air- and moisture-tolerant iron complexes, which exhibit excellent catalytic performances in the C-H borylation of arenes. This feature article summarises our recent work on PNN iron complexes, including their conception and design, as well as related reports on iron pincer complexes and iron-catalysed C-H borylation reactions.
Collapse
Affiliation(s)
- Masahiro Kamitani
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara 252-0373, Japan.
| |
Collapse
|
9
|
Matsubara K, Mitsuyama T, Shin S, Hori M, Ishikawa R, Koga Y. Homoleptic Cobalt(II) Phenoxyimine Complexes for Hydrosilylation of Aldehydes and Ketones without Base Activation of Cobalt(II). Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kouki Matsubara
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Tomoaki Mitsuyama
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Sayaka Shin
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Momoko Hori
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Ryuta Ishikawa
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Yuji Koga
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| |
Collapse
|
10
|
Kamitani M, Yujiri K, Yuge H. Hemisphere and Distance-Dependent Steric Analysis of PNN Iron Pincer Complexes Using SambVca 2.1 and Its Influence on Alkene Hydrosilylation. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masahiro Kamitani
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara 252-0373, Japan
| | - Kouta Yujiri
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara 252-0373, Japan
| | - Hidetaka Yuge
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara 252-0373, Japan
| |
Collapse
|
11
|
Lutz SA, Hickey AK, Gao Y, Chen CH, Smith JM. Two-State Reactivity in Iron-Catalyzed Alkene Isomerization Confers σ-Base Resistance. J Am Chem Soc 2020; 142:15527-15535. [PMID: 32786744 DOI: 10.1021/jacs.0c07300] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A low-coordinate, high spin (S = 3/2) organometallic iron(I) complex is a catalyst for the isomerization of alkenes. A combination of experimental and computational mechanistic studies supports a mechanism in which alkene isomerization occurs by the allyl mechanism. Importantly, while substrate binding occurs on the S = 3/2 surface, oxidative addition to an η1-allyl intermediate only occurs on the S = 1/2 surface. Since this spin state change is only possible when the alkene substrate is bound, the catalyst has high immunity to typical σ-base poisons due to the antibonding interactions of the high spin state.
Collapse
Affiliation(s)
- Sean A Lutz
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Anne K Hickey
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yafei Gao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Chun-Hsing Chen
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|