1
|
Wu LS, Zhou T, Shi BF. Pd(II)-Catalyzed Desymmetrizing gem-Dimethyl C(sp 3)-H Alkenylation/Aza-Wacker Cyclization Directed by PIP Auxiliary. Org Lett 2024; 26:4457-4462. [PMID: 38775281 DOI: 10.1021/acs.orglett.4c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Desymmetrization of gem-dimethyl groups has been developed as an efficient pathway to achieve asymmetric C(sp3)-H functionalization. Herein, we described a Pd(II)-catalyzed desymmetrizing gem-dimethyl C(sp3)-H alkenylation/aza-Wacker cyclization directed by a bidentate 2-pyridinylisopropyl auxiliary. Chiral α-methyl γ-lactams were obtained in good yields (up to 82%) and high enantioselectivities (up to 91.5% ee).
Collapse
Affiliation(s)
- Le-Song Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
2
|
Zhou G, Zhou T, Jiang AL, Qian PF, Li JY, Jiang BY, Chen ZJ, Shi BF. Electrooxidative Rhodium(III)/Chiral Carboxylic Acid-Catalyzed Enantioselective C-H Annulation of Sulfoximines with Alkynes. Angew Chem Int Ed Engl 2024; 63:e202319871. [PMID: 38289019 DOI: 10.1002/anie.202319871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 02/21/2024]
Abstract
The combination of achiral Cp*Rh(III) with chiral carboxylic acids (CCAs) represents an efficient catalytic system in transition metal-catalyzed enantioselective C-H activation. However, this hybrid catalysis is limited to redox-neutral C-H activation reactions and the adopt to oxidative enantioselective C-H activation remains elusive and pose a significant challenge. Herein, we describe the development of an electrochemical Cp*Rh(III)-catalyzed enantioselective C-H annulation of sulfoximines with alkynes enabled by chiral carboxylic acid (CCA) in an operationally friendly undivided cell at room temperature. A broad range of enantioenriched 1,2-benzothiazines are obtained in high yields with excellent enantioselectivities (up to 99 % yield and 98 : 2 er). The practicality of this method is demonstrated by scale-up reaction in a batch reactor with external circulation. A crucial chiral Cp*Rh(III) intermediate is isolated, characterized, and transformed, providing rational support for a Rh(III)/Rh(I) electrocatalytic cycle.
Collapse
Affiliation(s)
- Gang Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
| | - Ao-Lian Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Jun-Yi Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Bo-Yang Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Zi-Jia Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, Zhejiang, China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, 314001, Jiaxing, Zhejiang, China
| |
Collapse
|
3
|
Staronova L, Yamazaki K, Xu X, Shi H, Bickelhaupt FM, Hamlin TA, Dixon DJ. Cobalt-Catalyzed Enantio- and Regioselective C(sp 3 )-H Alkenylation of Thioamides. Angew Chem Int Ed Engl 2024; 63:e202316021. [PMID: 38143241 DOI: 10.1002/anie.202316021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
An enantioselective cobalt-catalyzed C(sp3 )-H alkenylation of thioamides with but-2-ynoate ester coupling partners employing thioamide directing groups is presented. The method is operationally simple and requires only mild reaction conditions, while providing alkenylated products as single regioisomers in excellent yields (up to 85 %) and high enantiomeric excess [up to 91 : 9 enantiomeric ratio (er), or up to >99 : 1 er after a single recrystallization]. Diverse downstream derivatizations of the products are demonstrated, delivering a range of enantioenriched constructs. Extensive computational studies using density functional theory provide insight into the detailed reaction mechanism, origin of enantiocontrol, and the unusual regioselectivity of the alkenylation reaction.
Collapse
Affiliation(s)
- Lucia Staronova
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Xing Xu
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Heyao Shi
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Trevor A Hamlin
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
4
|
Garai B, Das A, Kumar DV, Sundararaju B. Enantioselective C-H bond functionalization under Co(III)-catalysis. Chem Commun (Camb) 2024; 60:3354-3369. [PMID: 38441168 DOI: 10.1039/d3cc05329f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
While progress in enantioselective C-H functionalization has been accomplished by employing 4d and 5d transition metal-based catalysts, the rapid depletion of these metals in the earth's crust poses a serious threat to making these protocols sustainable. On the other hand, because of their unique reactivity, low toxicity, and high earth abundance, newer strategies utilizing affordable 3d transition metals have come to the forefront. Among the first-row transition metals, high-valent cobalt has recently attracted a lot of attention for catalytic C-H functionalization with mono and bidentate directing groups. This approach was extended for asymmetric catalysis due to a fairly thorough knowledge of its catalytic cycles. Four major themes have been investigated as a result of this insight: (1) rational design of a chiral Cp#Co(III)-catalyst, (2) chiral carboxylic acid with achiral Cp*Co(III)-catalysts using monodentate directing groups, (3) cobalt/salox-based systems, and (4) cobalt/chiral phosphoric acid-based hybrid systems with bidentate directing groups. Herein, we highlight the recent developments in high-valent cobalt-catalyzed enantioselective C-H functionalization up to October 2023, with the strong belief that the current state-of-the-art can attract considerable interest in the synthetic community, encouraging discoveries in the evolving landscape of asymmetric catalysis.
Collapse
Affiliation(s)
- Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Abir Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Doppalapudi Vineet Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| |
Collapse
|
5
|
Yang Y, Chen J, Shi Y, Liu P, Feng Y, Peng Q, Xu S. Catalytic Enantioselective Primary C-H Borylation for Acyclic All-Carbon Quaternary Stereocenters. J Am Chem Soc 2024; 146:1635-1643. [PMID: 38182551 DOI: 10.1021/jacs.3c12266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Creating a perfect catalyst to operate enzyme-like chiral recognition has been a long-sought aim. A challenging example in this context is constructing acyclic all-carbon quaternary stereogenic centers by transition metal-catalyzed enantioselective C-H activation. We now report highly enantioselective iridium-catalyzed primary C-H borylation of α-all-carbon substituted 2,2-dimethyl amides enabled by a tailor-made chiral bidentate boryl ligand (CBL). The success of the current transformation is attributed to the CBL/iridium catalyst, which has a confined chiral pocket. This protocol provides a diverse array of acyclic all-carbon quaternary stereocenters with excellent enantiocontrol and distinct structural features. Computational study reveals that steric hindrance of CBL could regulate the type of dominant orbital interaction between the catalyst and substrate, which is crucial to conferring high chiral induction.
Collapse
Affiliation(s)
- Yuhuan Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jingyao Chen
- State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongjia Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Peizhi Liu
- State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuxiang Feng
- State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
6
|
Kharitonov VB, Podyacheva E, Chusov D, Nelyubina YV, Muratov DV, Loginov DA. Planar Chiral Rhodium Complex Based on the Tetrahydrofluorenyl Core for Enantioselective Catalysis. Org Lett 2023. [PMID: 38051945 DOI: 10.1021/acs.orglett.3c03726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A simple four-step route to a chiral tetrahydrofluorenyl rhodium catalyst from naturally occurring (-)-α-pinene was developed. Our approach does not use multistep and time-consuming procedures such as chiral HPLC or diastereomeric resolution. The key to success lies in the face-selective coordination of rhodium to the sterically hindered tetrahydrofluorenyl ligand, giving only one diastereomeric complex. This catalyst proved to be highly efficient for asymmetric C-H annulation of aryl hydroxamates with alkenes (yield up to 95%, 91% ee) at low loading (up to 0.4 mol % based on Rh).
Collapse
Affiliation(s)
- Vladimir B Kharitonov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119334, Russia
| | - Evgeniya Podyacheva
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119334, Russia
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119334, Russia
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119334, Russia
| | - Dmitry V Muratov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119334, Russia
| | - Dmitry A Loginov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119334, Russia
- Plekhanov Russian University of Economics, Stremyannyi Pereulok 36, Moscow 117997, Russia
| |
Collapse
|
7
|
Kuang X, Li JJ, Liu T, Ding CH, Wu K, Wang P, Yu JQ. Cu-mediated enantioselective C-H alkynylation of ferrocenes with chiral BINOL ligands. Nat Commun 2023; 14:7698. [PMID: 38001060 PMCID: PMC10673954 DOI: 10.1038/s41467-023-43278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
A wide range of Cu(II)-catalyzed C-H activation reactions have been realized since 2006, however, whether a C-H metalation mechanism similar to Pd(II)-catalyzed C-H activation reaction is operating remains an open question. To address this question and ultimately develop ligand accelerated Cu(II)-catalyzed C-H activation reactions, realizing the enantioselective version and investigating the mechanism is critically important. With a modified chiral BINOL ligand, we report the first example of Cu-mediated enantioselective C-H activation reaction for the construction of planar chiral ferrocenes with high yields and stereoinduction. The key to the success of this reaction is the discovery of a ligand acceleration effect with the BINOL-based diol ligand in the directed Cu-catalyzed C-H alkynylation of ferrocene derivatives bearing an oxazoline-aniline directing group. This transformation is compatible with terminal aryl and alkyl alkynes, which are incompatible with Pd-catalyzed C-H activation reactions. This finding provides an invaluable mechanistic information in determining whether Cu(II) cleaves C-H bonds via CMD pathway in analogous manner to Pd(II) catalysts.
Collapse
Affiliation(s)
- Xin Kuang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P.R. China
- School of Science, Shanghai University, 99 Shang-Da Road, Shanghai, 200444, P. R. China
| | - Jian-Jun Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P.R. China
| | - Tao Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P.R. China
| | - Chang-Hua Ding
- School of Science, Shanghai University, 99 Shang-Da Road, Shanghai, 200444, P. R. China
| | - Kevin Wu
- The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P.R. China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P.R. China.
| | - Jin-Quan Yu
- The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
8
|
Wang X, Si XJ, Sun Y, Wei Z, Xu M, Yang D, Shi L, Song MP, Niu JL. C-N Axially Chiral Heterobiaryl Isoquinolinone Skeletons Construction via Cobalt-Catalyzed Atroposelective C-H Activation/Annulation. Org Lett 2023; 25:6240-6245. [PMID: 37595028 DOI: 10.1021/acs.orglett.3c01685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Herein, the atroposelective construction of isoquinolinones bearing a C-N chiral axis has been successfully developed via a Co-catalyzed C-H bond activation and annulation process. This conversion can be effectively carried out in an environmentally friendly oxygen atmosphere to generate the target C-N axially chiral frameworks with excellent reactivities and enantioselectivities (up to >99% ee) in the absence of any additives. Additionally, the current protocol has proved to be an alternative approach for the C-N axial architectures fabrication under electrochemical conditions for cobalt/Salox catalysis, and this strategy allowed the efficient and atom-economical synthesis of various axially chiral isoquinolinones under mild reaction conditions.
Collapse
Affiliation(s)
- Xinhai Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yingjie Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhisen Wei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miao Xu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
9
|
Li T, Shi L, Wang X, Yang C, Yang D, Song MP, Niu JL. Cobalt-catalyzed atroposelective C-H activation/annulation to access N-N axially chiral frameworks. Nat Commun 2023; 14:5271. [PMID: 37644016 PMCID: PMC10465517 DOI: 10.1038/s41467-023-40978-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
The N-N atropisomer, as an important and intriguing chiral system, was widely present in natural products, pharmaceutical lead compounds, and advanced material skeletons. The anisotropic structural characteristics caused by its special axial rotation have always been one of the challenges that chemists strive to overcome. Herein, we report an efficient method for the enantioselective synthesis of N-N axially chiral frameworks via a cobalt-catalyzed atroposelective C-H activation/annulation process. The reaction proceeds under mild conditions by using Co(OAc)2·4H2O as the catalyst with a chiral salicyl-oxazoline (Salox) ligand and O2 as an oxidant, affording a variety of N-N axially chiral products with high yields and enantioselectivities. This protocol provides an efficient approach for the facile construction of N-N atropisomers and further expands the range of of N-N axially chiral derivatives. Additionally, under the conditions of electrocatalysis, the desired N-N axially chiral products were also successfully achieved with good to excellent efficiencies and enantioselectivities.
Collapse
Affiliation(s)
- Tong Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xinhai Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chen Yang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| |
Collapse
|
10
|
Si XJ, Zhao X, Wang J, Wang X, Zhang Y, Yang D, Song MP, Niu JL. Cobalt-catalyzed enantioselective C-H/N-H annulation of aryl sulfonamides with allenes or alkynes: facile access to C-N axially chiral sultams. Chem Sci 2023; 14:7291-7303. [PMID: 37416705 PMCID: PMC10321536 DOI: 10.1039/d3sc01787g] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Herein we report a cobalt-catalyzed enantioselective C-H/N-H annulation of aryl sulfonamides with allenes and alkynes, using either chemical or electrochemical oxidation. By using O2 as the oxidant, the annulation with allenes proceeds efficiently with a low catalyst/ligand loading of 5 mol% and tolerates a wide range of allenes, including 2,3-butadienoate, allenylphosphonate, and phenylallene, resulting in C-N axially chiral sultams with high enantio-, regio-, and position selectivities. The annulation with alkynes also exhibits excellent enantiocontrol (up to >99% ee) with a variety of functional aryl sulfonamides, and internal and terminal alkynes. Furthermore, electrochemical oxidative C-H/N-H annulation with alkynes is achieved in a simple undivided cell, demonstrating the versatility and robustness of the cobalt/Salox system. The gram-scale synthesis and asymmetric catalysis further highlight the practical utility of this method.
Collapse
Affiliation(s)
- Xiao-Ju Si
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Xiaofang Zhao
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Jianli Wang
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Xinhai Wang
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Yuanshuo Zhang
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Dandan Yang
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| |
Collapse
|
11
|
Zhang ZJ, Li SW, Oliveira JCA, Li Y, Chen X, Zhang SQ, Xu LC, Rogge T, Hong X, Ackermann L. Data-driven design of new chiral carboxylic acid for construction of indoles with C-central and C-N axial chirality via cobalt catalysis. Nat Commun 2023; 14:3149. [PMID: 37258542 DOI: 10.1038/s41467-023-38872-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
Challenging enantio- and diastereoselective cobalt-catalyzed C-H alkylation has been realized by an innovative data-driven knowledge transfer strategy. Harnessing the statistics of a related transformation as the knowledge source, the designed machine learning (ML) model took advantage of delta learning and enabled accurate and extrapolative enantioselectivity predictions. Powered by the knowledge transfer model, the virtual screening of a broad scope of 360 chiral carboxylic acids led to the discovery of a new catalyst featuring an intriguing furyl moiety. Further experiments verified that the predicted chiral carboxylic acid can achieve excellent stereochemical control for the target C-H alkylation, which supported the expedient synthesis for a large library of substituted indoles with C-central and C-N axial chirality. The reported machine learning approach provides a powerful data engine to accelerate the discovery of molecular catalysis by harnessing the hidden value of the available structure-performance statistics.
Collapse
Affiliation(s)
- Zi-Jing Zhang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Shu-Wen Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Yanjun Li
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Xinran Chen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Shuo-Qing Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Li-Cheng Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Torben Rogge
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China.
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing, 100190, PR China.
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, PR China.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.
| |
Collapse
|
12
|
Yang D, Zhang X, Wang X, Si XJ, Wang J, Wei D, Song MP, Niu JL. Cobalt-Catalyzed Enantioselective C–H Annulation with Alkenes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xian Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xinghua Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
13
|
Cobalt(III)-catalyzed asymmetric ring-opening of 7-oxabenzonorbornadienes via indole C-H functionalization. Nat Commun 2023; 14:1094. [PMID: 36841798 PMCID: PMC9968317 DOI: 10.1038/s41467-023-36723-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
Asymmetric ring-opening of 7-oxabenzonorbornadienes is achieved via Co-catalyzed indole C-H functionalization. The utilization of chiral Co-catalyst consisting of a binaphthyl-derived trisubstituted cyclopentadienyl ligand resulted in high yields (up to 99%) and excellent enantioselectivity (>99% ee) for the target products with tolerance for diverse functional groups. Opposite diastereoselectivities are obtained with chiral Co-catalyst or Cp*CoI2CO. Combined experimental and computational studies suggest β-oxygen elimination being the selectivity-determining step of the reaction. Meanwhile, the reactions of 7-azabenzonorbornadiene could also be executed in a diastereodivergent manner.
Collapse
|
14
|
Desai B, Uppuluru A, Dey A, Deshpande N, Dholakiya BZ, Sivaramakrishna A, Naveen T, Padala K. The recent advances in cobalt-catalyzed C(sp 3)-H functionalization reactions. Org Biomol Chem 2023; 21:673-699. [PMID: 36602117 DOI: 10.1039/d2ob01936a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the past decades, reactions involving C-H functionalization have become a hot theme in organic transformations because they have a lot of potential for the streamlined synthesis of complex molecules. C(sp3)-H bonds are present in most organic species. Since organic molecules have massive significance in various aspects of life, the exploitation and functionalization of C(sp3)-H bonds hold enormous importance. In recent years, the first-row transition metal-catalyzed direct and selective functionalization of C-H bonds has emerged as a simple and environmentally friendly synthetic method due to its low cost, unique reactivity profiles and easy availability. Therefore, research advancements are being made to conceive catalytic systems that foster direct C(sp3)-H functionalization under benign reaction conditions. Cobalt-based catalysts offer mild and convenient reaction conditions at a reasonable expense compared to conventional 2nd and 3rd-row transition metal catalysts. Consequently, the probing of Co-based catalysts for C(sp3)-H functionalization is one of the hot topics from the outlook of an organic chemist. This review primarily focuses on the literature from 2018 to 2022 and sheds light on the substrate scope, selectivity, benefits and limitations of cobalt catalysts for organic transformations.
Collapse
Affiliation(s)
- Bhargav Desai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Ajay Uppuluru
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Ashutosh Dey
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Neha Deshpande
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Bharatkumar Z Dholakiya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Kishor Padala
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India. .,Central Tribal University of Andhra Pradesh, Kondakarakam Village, Cantonment, Vizianagaram, Andhra Pradesh, 535003, India
| |
Collapse
|
15
|
Zhang WW, Wang Q, Zhang SZ, Zheng C, You SL. (SCp)Rhodium-Catalyzed Asymmetric Satoh-Miura Reaction for Building-up Axial Chirality: Counteranion-Directed Switching of Reaction Pathways. Angew Chem Int Ed Engl 2023; 62:e202214460. [PMID: 36383091 DOI: 10.1002/anie.202214460] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022]
Abstract
Satoh-Miura reaction is an important method for extending π-systems by forging multi-substituted benzene rings via double aryl C-H activation and annulation with alkynes. However, the development of highly enantioselective Satoh-Miura reaction remains rather challenging. Herein, we report an asymmetric Satoh-Miura reaction between 1-aryl benzo[h]isoquinolines and internal alkynes enabled by a SCpRh-catalyst. Judiciously choosing the counteranion of the Rh-catalyst is crucial for the desired reactivity over the competitive formation of azoniahelicenes. Detailed mechanistic studies support the proposal of counteranion-directed switching of reaction pathways in Rh-catalyzed asymmetric C-H activation.
Collapse
Affiliation(s)
- Wen-Wen Zhang
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qiang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Su-Zhen Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
16
|
Wakikawa T, Sekine D, Murata Y, Bunno Y, Kojima M, Nagashima Y, Tanaka K, Yoshino T, Matsunaga S. Native Amide-Directed C(sp 3 )-H Amidation Enabled by Electron-Deficient Rh III Catalyst and Electron-Deficient 2-Pyridone Ligand. Angew Chem Int Ed Engl 2022; 61:e202213659. [PMID: 36305194 DOI: 10.1002/anie.202213659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 11/07/2022]
Abstract
Trivalent group-9 metal catalysts with a cyclopentadienyl-type ligand (CpMIII ; M=Co, Rh, Ir, Cp=cyclopentadienyl) have been widely used for directed C-H functionalizations, albeit that their application to challenging C(sp3 )-H functionalizations suffers from the limitations of the available directing groups. In this report, we describe directed C(sp3 )-H amidation reactions of simple amide substrates with a variety of substituents. The combination of an electron-deficient CpE Rh catalyst (CpE =1,3-bis(ethoxycarbonyl)-substituted Cp) and an electron-deficient 2-pyridone ligand is essential for high reactivity.
Collapse
Affiliation(s)
- Takumi Wakikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Daichi Sekine
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuta Murata
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Youka Bunno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
17
|
Li Y, Liou Y, Oliveira JCA, Ackermann L. Ruthenium(II)/Imidazolidine Carboxylic Acid-Catalyzed C-H Alkylation for Central and Axial Double Enantio-Induction. Angew Chem Int Ed Engl 2022; 61:e202212595. [PMID: 36108175 PMCID: PMC9828380 DOI: 10.1002/anie.202212595] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 01/12/2023]
Abstract
Enantioselective C-H activation has surfaced as a transformative toolbox for the efficient assembly of chiral molecules. However, despite of major advances in rhodium and palladium catalysis, ruthenium(II)-catalyzed enantioselective C-H activation has thus far largely proven elusive. In contrast, we herein report on a ruthenium(II)-catalyzed highly regio-, diastereo- and enantioselective C-H alkylation. The key to success was represented by the identification of novel C2-symmetric chiral imidazolidine carboxylic acids (CICAs), which are easily accessible in a one-pot fashion, as highly effective chiral ligands. This ruthenium/CICA system enabled the efficient installation of central and axial chirality, and featured excellent branched to linear ratios with generally >20 : 1 dr and up to 98 : 2 er. Mechanistic studies by experiment and computation were carried out to understand the catalyst mode of action.
Collapse
Affiliation(s)
- Yanjun Li
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Yan‐Cheng Liou
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| |
Collapse
|
18
|
Wang B, Xu G, Huang Z, Wu X, Hong X, Yao Q, Shi B. Single‐Step Synthesis of Atropisomers with Vicinal C−C and C−N Diaxes by Cobalt‐Catalyzed Atroposelective C−H Annulation. Angew Chem Int Ed Engl 2022; 61:e202208912. [DOI: 10.1002/anie.202208912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Bing‐Jie Wang
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Guo‐Xiong Xu
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Zong‐Wei Huang
- Department of Chemistry University of Michigan Ann Arbor MI 48109 USA
| | - Xu Wu
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Qi‐Jun Yao
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bing‐Feng Shi
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
19
|
Chen J, Teng M, Huang F, Song H, Wang Z, Zhuang H, Wu Y, Wu X, Yao Q, Shi B. Cobalt/Salox‐Catalyzed Enantioselective Dehydrogenative C−H Alkoxylation and Amination. Angew Chem Int Ed Engl 2022; 61:e202210106. [DOI: 10.1002/anie.202210106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jia‐Hao Chen
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Ming‐Ya Teng
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Fan‐Rui Huang
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hong Song
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Zhen‐Kai Wang
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - He‐Lin Zhuang
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yong‐Jie Wu
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xu Wu
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Qi‐Jun Yao
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bing‐Feng Shi
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
20
|
Wang Y, Zhang F, Chen H, Li Y, Li J, Ye M. Enantioselective Nickel‐Catalyzed C(sp
3
)−H Activation of Formamides. Angew Chem Int Ed Engl 2022; 61:e202209625. [DOI: 10.1002/anie.202209625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yin‐Xia Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Haihe Laboratory of Sustainable Chemical Transformations Nankai University Tianjin 300071 China
- Luoyang Institute of Science and Technology Luoyang, Henan Province 471023 China
| | - Feng‐Ping Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Haihe Laboratory of Sustainable Chemical Transformations Nankai University Tianjin 300071 China
| | - Hao Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Haihe Laboratory of Sustainable Chemical Transformations Nankai University Tianjin 300071 China
| | - Yue Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Haihe Laboratory of Sustainable Chemical Transformations Nankai University Tianjin 300071 China
| | - Jiang‐Fei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Haihe Laboratory of Sustainable Chemical Transformations Nankai University Tianjin 300071 China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Haihe Laboratory of Sustainable Chemical Transformations Nankai University Tianjin 300071 China
| |
Collapse
|
21
|
Wang YX, Zhang FP, Chen H, Li Y, Li JF, Ye M. Enantioselective Nickel‐Catalyzed C(sp3)−H Activation of Formamides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yin-Xia Wang
- Luoyang Institute of Science and Technology chemistry CHINA
| | | | - Hao Chen
- Nankai University chemistry CHINA
| | - Yue Li
- Nankai University chemistry CHINA
| | | | - Mengchun Ye
- nankai university chemistry 94 Weijin Rd, Lihua Bldg 310 300071 Tianjin CHINA
| |
Collapse
|
22
|
Chen JH, Teng MY, Huang FR, Song H, Wang ZK, Zhuang HL, Wu YJ, Wu X, Yao QJ, Shi BF. Cobalt/Salox‐Catalyzed Enantioselective Dehydrogenative C–H Alkoxylation and Amination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jia-Hao Chen
- Zhejiang University Departmenf of Chemistry CHINA
| | - Ming-Ya Teng
- Zhejiang University Departmenf of Chemistry CHINA
| | | | - Hong Song
- Zhejiang University Departmenf of Chemistry CHINA
| | | | | | - Yong-Jie Wu
- Zhejiang University Departmenf of Chemistry CHINA
| | - Xu Wu
- Zhejiang University Departmenf of Chemistry CHINA
| | - Qi-Jun Yao
- Zhejiang University Departmenf of Chemistry CHINA
| | - Bing-Feng Shi
- Zhejiang University Department of Chemistry 38 Zheda Rd. 310027 Hangzhou CHINA
| |
Collapse
|
23
|
Wang BJ, Xu GX, Huang ZW, Wu X, Hong X, Yao QJ, Shi BF. Single‐Step Synthesis of Atropisomers with Vicinal C–C and C–N Diaxes by Cobalt‐Catalyzed Atroposelective C–H Annulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Guo-Xiong Xu
- Zhejiang University Departmenf of Chemistry CHINA
| | - Zong-Wei Huang
- University of Michigan Departmenf of Chemistry UNITED STATES
| | - Xu Wu
- Zhejiang University Departmenf of Chemistry CHINA
| | - Xin Hong
- Zhejiang University Departmenf of Chemistry CHINA
| | - Qi-Jun Yao
- Zhejiang University Departmenf of Chemistry CHINA
| | - Bing-Feng Shi
- Zhejiang University Department of Chemistry 38 Zheda Rd. 310027 Hangzhou CHINA
| |
Collapse
|
24
|
Zhou YB, Zhou T, Qian PF, Li JY, Shi BF. Synthesis of Sulfur-Stereogenic Sulfoximines via Co(III)/Chiral Carboxylic Acid-Catalyzed Enantioselective C–H Amidation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yi-Bo Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jun-Yi Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
25
|
Li JY, Xie PP, Zhou T, Qian PF, Zhou YB, Li HC, Hong X, Shi BF. Ir(III)-Catalyzed Asymmetric C–H Activation/Annulation of Sulfoximines Assisted by the Hydrogen-Bonding Interaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jun-Yi Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pei-Pei Xie
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yi-Bo Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Hao-Chen Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, PR China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
26
|
Hirata Y, Sekine D, Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. Cobalt(III)/Chiral Carboxylic Acid-Catalyzed Enantioselective Synthesis of Benzothiadiazine-1-oxides via C-H Activation. Angew Chem Int Ed Engl 2022; 61:e202205341. [PMID: 35491238 DOI: 10.1002/anie.202205341] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/11/2022]
Abstract
Among sulfoximine derivatives containing a chiral sulfur center, benzothiadiazine-1-oxides are important for applications in medicinal chemistry. Here, we report that the combination of an achiral cobalt(III) catalyst and a pseudo-C2 -symmetric H8 -binaphthyl chiral carboxylic acid enables the asymmetric synthesis of benzothiadiazine-1-oxides from sulfoximines and dioxazolones via enantioselective C-H bond cleavage. With the optimized protocol, benzothiadiazine-1-oxides with several functional groups can be accessed with high enantioselectivity.
Collapse
Affiliation(s)
- Yuki Hirata
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Daichi Sekine
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yoshimi Kato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Luqing Lin
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
27
|
Yoshino T. Enantioselective C–H Functionalization Using High-Valent Group 9 Metal Catalysts. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812
| |
Collapse
|
28
|
Wu D, Liu Z, Chang Y, Chen J, Qi H, Dong Y, Xu H. Cp*Co III-catalyzed formal [4 + 2] cycloaddition of 2-phenyl-1 H-imidazoles to afford imidazo[1,2- c]quinazoline derivatives. Org Biomol Chem 2022; 20:4993-4998. [PMID: 35694953 DOI: 10.1039/d2ob00697a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic protocol based on Cp*CoIII-catalyzed C-H amidation/annulation of 2-aryl-1H-imidazoles with 1,4,2-dioxazol-5-ones was developed to give imidazo[1,2-c]quinazoline derivatives with broad substrate scope in moderate to good yields. The method has good prospects of application in the synthesis of imidazo[1,2-c]quinazoline drugs.
Collapse
Affiliation(s)
- Deyu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhengqiang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yiting Chang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiajing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Haixiang Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medcial University, Guiyang 550014, China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
29
|
Yao QJ, Chen JH, Song H, Huang FR, Shi BF. Cobalt/Salox-Catalyzed Enantioselective C-H Functionalization of Arylphosphinamides. Angew Chem Int Ed Engl 2022; 61:e202202892. [PMID: 35385597 DOI: 10.1002/anie.202202892] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Previous methods on CoIII -catalyzed asymmetric C-H activation rely on the use of tailor-made cyclopentadienyl-ligated CoIII complexes, which require lengthy steps for the preparation. Herein, we report an unprecedented enantioselective C-H functionalization enabled by a simple cobalt/salicyloxazoline (Salox) catalysis. The chiral Salox ligands can be easily prepared in one step from salicylonitrile and chiral amino alcohols. A broad range of P-stereogenic compounds were synthesized in high yields with excellent enantioselectivities (45 examples, up to 99 % yield and >99 % ee). The isolation and characterization of several intermediates provided insights into the generation of active catalytic cobalt species, the action of Salox, and the mode of stereocontrol.
Collapse
Affiliation(s)
- Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Hong Song
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
30
|
Hirata Y, Sekine D, Kato Y, Lin L, Kojima M, Yoshino T, Matsunaga S. Cobalt(III)/Chiral Carboxylic Acid‐Catalyzed Enantioselective Synthesis of Benzothiadiazine‐1‐oxides via C−H Activation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuki Hirata
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Daichi Sekine
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Yoshimi Kato
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Luqing Lin
- Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 P. R. China
- Global Station for Biosurfaces and Drug Discovery Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
- Global Station for Biosurfaces and Drug Discovery Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences Hokkaido University Kita-ku, Sapporo 060-0812 Japan
- Global Station for Biosurfaces and Drug Discovery Hokkaido University Kita-ku, Sapporo 060-0812 Japan
| |
Collapse
|
31
|
Yao QJ, Chen JH, Song H, Huang FR, Shi BF. Cobalt/Salox‐Catalyzed Enantioselective C–H Functionalization of Arylphosphinamides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qi-Jun Yao
- Zhejiang University Department of Chemistry CHINA
| | - Jia-Hao Chen
- Zhejiang University Department of Chemistry CHINA
| | - Hong Song
- Zhejiang University Department of Chemistry CHINA
| | | | - Bing-Feng Shi
- Zhejiang University Department of Chemistry 38 Zheda Rd. 310027 Hangzhou CHINA
| |
Collapse
|
32
|
Ye M, Xu W. Enantioselective Cobalt-Catalyzed C–H Functionalization. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1801-2595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractCo-catalyzed C–H functionalization has received great attention due to the high earth abundance, low biotoxicity, and unique reactivity of cobalt; enantioselective control of these reactions has been a formidable challenge. Various efficient strategies have recently been developed for enantioselective Co-catalyzed C–H functionalization, but there is no topical review of this field. Herein, we give a detailed summary of this rapidly growing field, highlighting critical progress, current challenges, and future trends.1 Introduction2 Enantioselective C–H Functionalization via Low-Valent Co Catalysis2.1 Chiral Diphosphines for Enantioselective Control2.2 Chiral Monophosphines or N-Heterocyclic Carbenes for Enantioselective Control3 Enantioselective C–H Functionalization via High-Valent Co Catalysis3.1 Chiral Acids for Enantioselective Control3.2 Chiral Cp Ligands for Enantioselective Control4 Conclusions and Outlook
Collapse
Affiliation(s)
- Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University
- Haihe Laboratory of Sustainable Chemical Transformations
| | - Weiwei Xu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University
| |
Collapse
|
33
|
Lv X, Xu J, Sun C, Su F, Cai Y, Jin Z, Chi YR. Access to Planar Chiral Ferrocenes via N-Heterocyclic Carbene-Catalyzed Enantioselective Desymmetrization Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaokang Lv
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jun Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang 550025, China
| | - Cuiyun Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Fen Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuanlin Cai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhichao Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
34
|
Xie H, Song JL, Jiang CY, Huang YX, Zeng JY, Liu XG, Zhang SS, Yang F. Thioether-directed Rh(III)-catalyzed peri-selective acyloxylation of arenes. Org Biomol Chem 2022; 20:565-569. [PMID: 34985096 DOI: 10.1039/d1ob02236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A thioether directed acyloxylation of arenes has been realized via Cp*Rh(III)-catalyzed C-H activation and subsequent coupling with carboxylic acids. This new method showed high functional group compatibility and broad substrate scope. Primary mechanistic studies have been conducted and a tentative reaction mechanism was proposed. It represents the first example of a thioether-directed Cp*Rh(III)-catalyzed C(sp2)-H acyloxylation reaction.
Collapse
Affiliation(s)
- Hui Xie
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Jia-Lin Song
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Chun-Yong Jiang
- School of Ethnic Medicine, Guizhou Minzu University, Guiyang, 550025, P. R. China
| | - Yan-Xia Huang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Jun-Yi Zeng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Xu-Ge Liu
- Key Laboratory of Brain Targeted Nanodrugs of Henan Province, School of Pharmacy, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Fan Yang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
35
|
Yu X, Zhang ZZ, Niu JL, Shi BF. Coordination-assisted, transition-metal-catalyzed enantioselective desymmetric C–H functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01884a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in transition-metal-catalyzed enantioselective desymmetric C–H functionalization are summarized.
Collapse
Affiliation(s)
- Xin Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuo-Zhuo Zhang
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun-Long Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
36
|
Liu B, Romine AM, Rubel CZ, Engle KM, Shi BF. Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp 3)-H Bonds. Chem Rev 2021; 121:14957-15074. [PMID: 34714620 PMCID: PMC8968411 DOI: 10.1021/acs.chemrev.1c00519] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transition-metal-catalyzed, coordination-assisted C(sp3)-H functionalization has revolutionized synthetic planning over the past few decades as the use of these directing groups has allowed for increased access to many strategic positions in organic molecules. Nonetheless, several challenges remain preeminent, such as the requirement for high temperatures, the difficulty in removing or converting directing groups, and, although many metals provide some reactivity, the difficulty in employing metals outside of palladium. This review aims to give a comprehensive overview of coordination-assisted, transition-metal-catalyzed, direct functionalization of nonactivated C(sp3)-H bonds by covering the literature since 2004 in order to demonstrate the current state-of-the-art methods as well as the current limitations. For clarity, this review has been divided into nine sections by the transition metal catalyst with subdivisions by the type of bond formation. Synthetic applications and reaction mechanism are discussed where appropriate.
Collapse
Affiliation(s)
- Bin Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Andrew M. Romine
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Camille Z. Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States.,Corresponding Author- (K. M. E.); (B.-F. S.)
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China,Corresponding Author- (K. M. E.); (B.-F. S.)
| |
Collapse
|
37
|
Zhang Q, Wu LS, Shi BF. Forging C−heteroatom bonds by transition metal-catalyzed enantioselective C–H functionalization. Chem 2021. [DOI: 10.1016/j.chempr.2021.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Liu YH, Xie PP, Liu L, Fan J, Zhang ZZ, Hong X, Shi BF. Cp*Co(III)-Catalyzed Enantioselective Hydroarylation of Unactivated Terminal Alkenes via C-H Activation. J Am Chem Soc 2021; 143:19112-19120. [PMID: 34747617 DOI: 10.1021/jacs.1c08562] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enantioselective hydroarylation of unactivated terminal akenes constitutes a prominent challenge in organic chemistry. Herein, we reported a Cp*Co(III)-catalyzed asymmetric hydroarylation of unactivated aliphatic terminal alkenes assisted by a new type of tailor-made amino acid ligands. Critical to the chiral induction was the engaging of a novel noncovalent interaction (NCI), which has seldomly been disclosed in the C-H activation area, arising from the molecular recognition among the organocobalt(III) intermediate, the coordinated alkene, and the well-designed chiral ligand. A broad range of C2-alkylated indoles were obtained in high yields and excellent enantioselectivities. DFT calculations revealed the reaction mechanism and elucidated the origins of chiral induction in the stereodetermining alkene insertion step.
Collapse
Affiliation(s)
- Yan-Hua Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pei-Pei Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Lei Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jun Fan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhuo-Zhuo Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Clean Energy Utilization, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
39
|
Yang C, Li F, Wu TR, Cui R, Wu BB, Jin RX, Li Y, Wang XS. Development of Axially Chiral Styrene-Type Carboxylic Acid Ligands via Palladium-Catalyzed Asymmetric C-H Alkynylation. Org Lett 2021; 23:8132-8137. [PMID: 34647750 DOI: 10.1021/acs.orglett.1c02692] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A weakly coordinated carboxylate-directed palladium-catalyzed atroposelective C-H alkynylation method for the development of novel axially chiral styrene-type carboxylic acids is disclosed. This transformation exhibits good yields (up to 85%), excellent enantiocontrol (up to 99% ee), and mild conditions. Notably, the synthetic utility of the resulting alkynyl carboxylic acid derivatives was demonstrated by various derivatizations as well as their potential as chiral ligands in asymmetric C-H activations.
Collapse
Affiliation(s)
- Chi Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Fei Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Tian-Rui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ru Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Bing-Bing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ruo-Xing Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
40
|
Lukasevics L, Cizikovs A, Grigorjeva L. C-H bond functionalization by high-valent cobalt catalysis: current progress, challenges and future perspectives. Chem Commun (Camb) 2021; 57:10827-10841. [PMID: 34570134 DOI: 10.1039/d1cc04382j] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the last decade, high-valent cobalt catalysis has earned a place in the spotlight as a valuable tool for C-H activation and functionalization. Since the discovery of its unique reactivity, more and more attention has been directed towards the utilization of cobalt as an alternative to noble metal catalysts. In particular, Cp*Co(III) complexes, as well as simple Co(II) and Co(III) salts in combination with bidentate chelation assistance, have been extensively used for the development of novel transformations. In this review, we have demonstrated the existing trends in the C-H functionalization methodology using high-valent cobalt catalysis and highlighted the main challenges to overcome, as well as perspective directions, which need to be further developed in the future.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| | - Aleksandrs Cizikovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| |
Collapse
|
41
|
Yuan WK, Shi BF. Synthesis of Chiral Spirolactams via Sequential C-H Olefination/Asymmetric [4+1] Spirocyclization under a Simple Co II /Chiral Spiro Phosphoric Acid Binary System. Angew Chem Int Ed Engl 2021; 60:23187-23192. [PMID: 34435722 DOI: 10.1002/anie.202108853] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/09/2021] [Indexed: 12/25/2022]
Abstract
An unprecedented enantioselective synthesis of spiro-γ-lactams via a sequential C-H olefination/asymmetric [4+1] spirocyclization under a simple CoII /chiral spiro phosphoric acid (SPA) binary system is reported. A range of biologically important spiro-γ-lactams are obtained with high levels of enantioselectivity (up to 98 % ee). The concise, asymmetric synthesis of an aldose reductase inhibitor was successfully achieved. Notably, contrast to previous reports that relied on the use of cyclopentadienyl or its derivatives (achiral Cp*, CptBu , or chiral Cpx ) ligated CoIII complexes requiring tedious steps to prepare, cheap and commercially available cobalt(II) acetate tetrahydrate was used as an efficient precatalyst.
Collapse
Affiliation(s)
- Wen-Kui Yuan
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
42
|
A New Dioxazolone for the Synthesis of 1,2‐Aminoalcohols via Iridium(III)‐Catalyzed C(sp
3
)−H Amidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Antien K, Geraci A, Parmentier M, Baudoin O. A New Dioxazolone for the Synthesis of 1,2-Aminoalcohols via Iridium(III)-Catalyzed C(sp 3 )-H Amidation. Angew Chem Int Ed Engl 2021; 60:22948-22955. [PMID: 34427390 PMCID: PMC8519009 DOI: 10.1002/anie.202110019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 12/14/2022]
Abstract
Vicinal aminoalcohols are widespread structural motifs in bioactive molecules. We report the development of a new dioxazolone reagent containing a p-nitrophenyldifluoromethyl group, which 1. displays a good safety profile; 2. shows a remarkably high reactivity in the oxime-directed iridium(III)-catalyzed amidation of unactivated C(sp3 )-H bonds; 3. leads to amide products which can be hydrolyzed under mild conditions. The amidation reaction is mild, general and compatible with both primary C-H bonds of tertiary and secondary alcohols, as well as secondary C-H bonds of cyclic secondary alcohols. This method provides an easy access to free 1,2-aminoalcohols after efficient and mild cleavage of the oxime directing group and activated amide.
Collapse
Affiliation(s)
- Kevin Antien
- University of BaselDepartment of ChemistrySt. Johanns-Ring 194056BaselSwitzerland
| | - Andrea Geraci
- University of BaselDepartment of ChemistrySt. Johanns-Ring 194056BaselSwitzerland
| | | | - Olivier Baudoin
- University of BaselDepartment of ChemistrySt. Johanns-Ring 194056BaselSwitzerland
| |
Collapse
|
44
|
Jiang H, Geng R, Wei J, Gong L. Atroposelective sp
3
C—H Coupling for Kinetic Resolution of Thioanilide Atropisomers. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hua‐Jie Jiang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Rui‐Long Geng
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Jia‐Hui Wei
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Liu‐Zhu Gong
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
- Center for Excellence in Molecular Synthesis of CAS Hefei Anhui 230026 China
| |
Collapse
|
45
|
Yuan W, Shi B. Synthesis of Chiral Spirolactams via Sequential C−H Olefination/Asymmetric [4+1] Spirocyclization under a Simple Co
II
/Chiral Spiro Phosphoric Acid Binary System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Wen‐Kui Yuan
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bing‐Feng Shi
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| |
Collapse
|
46
|
Pan C, Yin SY, Gu Q, You SL. Cp xM(iii)-catalyzed enantioselective C-H functionalization through migratory insertion of metal-carbenes/nitrenes. Org Biomol Chem 2021; 19:7264-7275. [PMID: 34612356 DOI: 10.1039/d1ob01248g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CpxM(iii)-catalyzed enantioselective C-H functionalization reactions have progressed rapidly using either chiral cyclopentadienyl ligands or appropriate chiral carboxylic acids. In this context, highly reactive carbene and nitrene precursors can serve as effective C-H coupling partners, providing a straightforward and efficient approach to access chiral molecules. In this review, we highlight the developments in CpxM(iii)-catalyzed enantioselective C-H functionalization reactions through migratory insertion of metal-carbenes/nitrenes by employing chiral CpxM(iii) complexes or achiral CpxM(iii) complexes combined with chiral carboxylic acids.
Collapse
Affiliation(s)
- Chongqing Pan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | | | | | | |
Collapse
|
47
|
Herraiz AG, Cramer N. Cobalt(III)-Catalyzed Diastereo- and Enantioselective Three-Component C–H Functionalization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03153] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ana G. Herraiz
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
48
|
Sunny S, Karvembu R. Recent Advances in Cobalt‐Catalyzed, Directing‐Group‐Assisted C−H Bond Amidation Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sereena Sunny
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| |
Collapse
|
49
|
Ju M, Schomaker JM. Nitrene transfer catalysts for enantioselective C–N bond formation. Nat Rev Chem 2021; 5:580-594. [PMID: 37117585 DOI: 10.1038/s41570-021-00291-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Transition-metal-catalysed, non-enzymatic transformations of C-H and C=C bonds to C-N bonds through nitrene transfer (NT) are powerful synthetic tools to prepare valuable amine building blocks. Although the first examples of racemic NT were reported more than 50 years ago, catalysts that mediate enantioselective NT with a broad substrate scope have been slow to emerge. However, the past ten years have seen the discovery of several first-row, second-row and third-row transition metal catalysts for asymmetric NT. This Review covers recent developments in asymmetric aziridination and C-H bond amination reactions. We describe catalyst design principles, re-evaluate traditional catalyst architectures, show how the scope of nitrene precursors has expanded and present new mechanistic insights. Following this, we highlight remaining opportunities and challenges to developing more practical and general synthetic methodologies. Realizing chemoselective, site-selective and enantioselective intermolecular NT will streamline amine synthesis and allow us to explore new chemical space.
Collapse
|
50
|
Yoshino T, Matsunaga S. Chiral Carboxylic Acid Assisted Enantioselective C–H Activation with Achiral CpxMIII (M = Co, Rh, Ir) Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01351] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tatsuhiko Yoshino
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|