1
|
Bennett MT, Park KA, Gunnoe TB. Rhodium-Catalyzed Arene Alkenylation: Selectivity and Reaction Mechanism as a Function of In Situ Oxidant Identity. Organometallics 2024; 43:2113-2131. [PMID: 39328474 PMCID: PMC11423412 DOI: 10.1021/acs.organomet.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Rhodium catalyzed arene alkenylation reactions with arenes and olefins using dioxygen as the direct oxidant (e.g., ACS Catal. 2020, 10, 11519), Cu(II) carboxylates (e.g., Science 2015, 348, 421; J. Am. Chem. Soc. 2017, 139, 5474) or Fe(III) carboxylate clusters (e.g., ACS Catal. 2024, 14, 10295), in the presence or absence of dioxygen, have been reported. These processes involve heating catalyst precursor [(η2-C2H4)2Rh(μ-OAc)]2, olefin, arene, and oxidant at temperatures between 120 and 200 °C. Herein, we report comparative studies of Rh-catalyzed arene alkenylation as a function of oxidant identity. This work includes comparisons of catalysis using Cu(II) carboxylates in the presence and absence of dioxygen, catalysis with only dioxygen as the oxidant, and Fe(III) carboxylates in the presence and absence of dioxygen. We report studies of catalysis with each oxidant including reagent concentration dependencies and kinetic isotope effect experiments using C6H6 or C6D6 and protio- or deutero carboxylic acid. Additionally, we probe ortho/meta/para regioselectivity for reactions of ethylene with monosubstituted arenes and Markovnikov/anti-Markovnikov selectivity with monosubstituted olefins. These studies indicate that the variation of oxidant identity impacts catalyst speciation, the reaction mechanism, and the reaction rate. Consequently, distinct Markovnikov/anti-Markovnikov and ortho/meta/para selectivities are observed for catalysis with each oxidant.
Collapse
Affiliation(s)
- Marc T. Bennett
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kwanwoo A. Park
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
2
|
Bennett MT, Park KA, Musgrave CB, Brubaker JW, Dickie DA, Goddard WA, Gunnoe TB. Hexa-Fe(III) Carboxylate Complexes Facilitate Aerobic Hydrocarbon Oxidative Functionalization: Rh Catalyzed Oxidative Coupling of Benzene and Ethylene to Form Styrene. ACS Catal 2024; 14:10295-10316. [PMID: 38988649 PMCID: PMC11232027 DOI: 10.1021/acscatal.4c02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
Fe(II) carboxylates react with dioxygen and carboxylic acid to form Fe6(μ-OH)2(μ3-O)2(μ-X)12(HX)2 (X = acetate or pivalate), which is an active oxidant for Rh-catalyzed arene alkenylation. Heating (150-200 °C) the catalyst precursor [(η2-C2H4)2Rh(μ-OAc)]2 with ethylene, benzene, Fe(II) carboxylate, and dioxygen yields styrene >30-fold faster than the reaction with dioxygen in the absence of the Fe(II) carboxylate additive. It is also demonstrated that Fe6(μ-OH)2(μ3-O)2(μ-X)12(HX)2 is an active oxidant under anaerobic conditions, and the reduced material can be reoxidized to Fe6(μ-OH)2(μ3-O)2(μ-X)12(HX)2 by dioxygen. At optimized conditions, a turnover frequency of ∼0.2 s-1 is achieved. Unlike analogous reactions with Cu(II) carboxylate oxidants, which undergo stoichiometric Cu(II)-mediated production of phenyl esters (e.g., phenyl acetate) as side products at temperatures ≥150 °C, no phenyl ester side product is observed when Fe carboxylate additives are used. Kinetic isotope effect experiments using C6H6 and C6D6 give k H/k D = 3.5(3), while the use of protio or monodeutero pivalic acid reveals a small KIE with k H/k D = 1.19(2). First-order dependencies on Fe(II) carboxylate and dioxygen concentration are observed in addition to complicated kinetic dependencies on the concentration of carboxylic acid and ethylene, both of which inhibit the reaction rate at a high concentration. Mechanistic studies are consistent with irreversible benzene C-H activation, ethylene insertion into the formed Rh-Ph bond, β-hydride elimination, and reaction of Rh-H with Fe6(μ-OH)2(μ3-O)2(μ-X)12(HX)2 to regenerate a Rh-carboxylate complex.
Collapse
Affiliation(s)
- Marc T. Bennett
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kwanwoo A. Park
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B. Musgrave
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - Jack W. Brubaker
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - Diane A. Dickie
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - William A. Goddard
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - T. Brent Gunnoe
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
3
|
Reid C, Gunnoe TB. Rhodium-Catalyzed Oxidative Alkenylation of Anisole: Control of Regioselectivity. Organometallics 2024; 43:1362-1376. [PMID: 38938896 PMCID: PMC11200324 DOI: 10.1021/acs.organomet.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024]
Abstract
We report the conversion of anisoles and olefins to alkenyl anisoles via a transition-metal-catalyzed arene C-H activation and olefin insertion mechanism. The catalyst precursor, [(η2-C2H4)2Rh(μ-OAc)]2, and the in situ oxidant Cu(OPiv)2 (OPiv = pivalate) convert anisoles and olefins (ethylene or propylene) to alkenyl anisoles. When ethylene is used as the olefin, the o/m/p ratio varies between approximately 1:3:1 (selective for 3-methoxystyrene) and 1:5:10 (selective for 4-methoxystyrene). When propylene is the olefin, the o/m/p regioselectivity varies between approximately 1:8:20 and 1:8.5:5. The o/m/p ratios depend on the concentration of pivalic acid and olefin. For example, when using ethylene, at relatively high pivalic acid concentrations and low ethylene concentrations, the o/m/p regioselectivity is 1:3:1. Conversely, again for use of ethylene, at relatively low pivalic acid concentrations and high ethylene concentrations, the o/m/p regioselectivity is 1:5:10. Mechanistic studies of the conversion of anisoles and olefins to alkenyl anisoles provide evidence that the regioselectivity is likely under Curtin-Hammett conditions.
Collapse
Affiliation(s)
- Christopher
W. Reid
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
4
|
Ketcham H, Zhu W, Gunnoe TB. Highly Anti-Markovnikov Selective Oxidative Arene Alkenylation Using Ir(I) Catalyst Precursors and Cu(II) Carboxylates. Organometallics 2024; 43:774-786. [PMID: 38606203 PMCID: PMC11005047 DOI: 10.1021/acs.organomet.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
The Ir(I) complex [Ir(μ-Cl)(coe)2]2 (coe = cis-cyclooctene) is a catalyst precursor for benzene alkenylation using Cu(II) carboxylate salts. Using [Ir(μ-Cl)(coe)2]2, propenylbenzenes are formed from the reaction of benzene, propylene, and CuX2 (X = acetate, pivalate, or 2-ethylhexanoate). The Ir-catalyzed reactions selectively produce anti-Markovnikov products, trans-β-methylstyrene, cis-β-methylstyrene, and allylbenzene, along with minor amounts of the Markovnikov product, α-methylstyrene. The selectivity for the anti-Markovnikov products changed as the reaction progressed. For example, in a reaction that uses 240 equiv of Cu(OHex)2 (related to Ir), the selectivity for the anti-Markovnikov products increases from 18:1 at 3 h to 42:1 at 42 h with 30 psig of propylene at 150 °C. Studies of product stability have revealed that the increase in the selectivity for anti-Markovnikov products is not the result of an isomerization process or the selective decomposition of specific products. Rather, the change in selectivity correlates with the ratio of Cu(II) to Cu(I) in the solution, which decreases as the reaction progresses. We propose that the identity of the active catalyst changes as Cu(I) is accumulated, resulting in the formation of an active catalyst that is more selective for anti-Markovnikov products. Using a 4:1 Cu(I)/Cu(II) ratio at the start of the reaction, a 65(3):1 anti-Markovnikov/Markovnikov ratio is observed.
Collapse
Affiliation(s)
- Hannah Ketcham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Weihao Zhu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
5
|
Bennett MT, Jia X, Musgrave CB, Zhu W, Goddard WA, Gunnoe TB. Pd(II) and Rh(I) Catalytic Precursors for Arene Alkenylation: Comparative Evaluation of Reactivity and Mechanism Based on Experimental and Computational Studies. J Am Chem Soc 2023. [PMID: 37392467 DOI: 10.1021/jacs.3c04295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
We combine experimental and computational investigations to compare and understand catalytic arene alkenylation using the Pd(II) and Rh(I) precursors Pd(OAc)2 and [(η2-C2H4)2Rh(μ-OAc)]2 with arene, olefin, and Cu(II) carboxylate at elevated temperatures (>120 °C). Under specific conditions, previous computational and experimental efforts have identified heterotrimetallic cyclic PdCu2(η2-C2H4)3(μ-OPiv)6 and [(η2-C2H4)2Rh(μ-OPiv)2]2(μ-Cu) (OPiv = pivalate) species as likely active catalysts for these processes. Further studies of catalyst speciation suggest a complicated equilibrium between Cu(II)-containing complexes containing one Rh or Pd atom with complexes containing two Rh or Pd atoms. At 120 °C, Rh catalysis produces styrene >20-fold more rapidly than Pd. Also, at 120 °C, Rh is ∼98% selective for styrene formation, while Pd is ∼82% selective. Our studies indicate that Pd catalysis has a higher predilection toward olefin functionalization to form undesired vinyl ester, while Rh catalysis is more selective for arene/olefin coupling. However, at elevated temperatures, Pd converts vinyl ester and arene to vinyl arene, which is proposed to occur through low-valent Pd(0) clusters that are formed in situ. Regardless of arene functionality, the regioselectivity for alkenylation of mono-substituted arenes with the Rh catalyst gives an approximate 2:1 meta/para ratio with minimal ortho C-H activation. In contrast, Pd selectivity is significantly influenced by arene electronics, with electron-rich arenes giving an approximate 1:2:2 ortho/meta/para ratio, while the electron-deficient (α,α,α)-trifluorotoluene gives a 3:1 meta/para ratio with minimal ortho functionalization. Kinetic intermolecular arene ethenylation competition experiments find that Rh reacts most rapidly with benzene, and the rate of mono-substituted arene alkenylation does not correlate with arene electronics. In contrast, with Pd catalysis, electron-rich arenes react more rapidly than benzene, while electron-deficient arenes react less rapidly than benzene. These experimental findings, in combination with computational results, are consistent with the arene C-H activation step for Pd catalysis involving significant η1-arenium character due to Pd-mediated electrophilic aromatic substitution character. In contrast, the mechanism for Rh catalysis is not sensitive to arene-substituent electronics, which we propose indicates less electrophilic aromatic substitution character for the Rh-mediated arene C-H activation.
Collapse
Affiliation(s)
- Marc T Bennett
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Xiaofan Jia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B Musgrave
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Weihao Zhu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - T Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
6
|
Ketcham HE, Bennett MT, Reid CW, Gunnoe TB. Advances in arene alkylation and alkenylation catalyzed by transition metal complexes based on ruthenium, nickel, palladium, platinum, rhodium and iridium. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
7
|
Electron-Deficient Ru(II) Complexes as Catalyst Precursors for Ethylene Hydrophenylation. INORGANICS 2022. [DOI: 10.3390/inorganics10060076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ruthenium(II) complexes with the general formula TpRu(L)(NCMe)Ph (Tp = hydrido(trispyrazolyl)borate, L = CO, PMe3, P(OCH2)3CEt, P(pyr)3, P(OCH2)2(O)CCH3) have previously been shown to catalyze arene alkylation via Ru-mediated arene C–H activation including the conversion of benzene and ethylene to ethylbenzene. Previous studies have suggested that the catalytic performance of these TpRu(II) catalysts increases with reduced electron-density at the Ru center. Herein, three new structurally related Ru(II) complexes are synthesized, characterized, and studied for possible catalytic benzene ethylation. TpRu(NO)Ph2 exhibited low stability due to the facile elimination of biphenyl. The Ru(II) complex (TpBr3)Ru(NCMe)(P(OCH2)3CEt)Ph (TpBr3 = hydridotris(3,4,5-tribromopyrazol-1-yl)borate) showed no catalytic activity for the conversion of benzene and ethylene to ethylbenzene, likely due to the steric bulk introduced by the bromine substituents. (Ttz)Ru(NCMe)(P(OCH2)3CEt)Ph (Ttz = hydridotris(1,2,4-triazol-1-yl)borate) catalyzed approximately 150 turnover numbers (TONs) of ethylbenzene at 120 °C in the presence of Lewis acid additives. Here, we compare the activity and features of catalysis using (Ttz)Ru(NCMe)(P(OCH2)3CEt)Ph to previously reported catalysis based on TpRu(L)(NCMe)Ph catalyst precursors.
Collapse
|
8
|
Gu S, Musgrave CB, Gehman ZM, Zhang K, Dickie DA, Goddard WA, Gunnoe TB. Rhodium and Iridium Complexes Bearing “Capping Arene” Ligands: Synthesis and Characterization. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shunyan Gu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B. Musgrave
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Zoë M. Gehman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ke Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
9
|
Zhu W, Gunnoe TB. Advances in Group 10 Transition-Metal-Catalyzed Arene Alkylation and Alkenylation. J Am Chem Soc 2021; 143:6746-6766. [PMID: 33908253 DOI: 10.1021/jacs.1c01810] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
On a large scale, the dominant method to produce alkyl arenes has been arene alkylation from arenes and olefins using acid-based catalysis. The addition of arene C-H bonds across olefin C═C bonds catalyzed by transition-metal complexes through C-H activation and olefin insertion into metal-aryl bonds provides an alternative approach with potential advantages. This Perspective presents recent developments of olefin hydroarylation and oxidative olefin hydroarylation catalyzed by molecular complexes based on group 10 transition metals (Ni, Pd, Pt). Emphasis is placed on comparisons between Pt catalysts and other group 10 metal catalysts as well as Ru, Ir, and Rh catalysts.
Collapse
Affiliation(s)
- Weihao Zhu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - T Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
10
|
Musgrave CB, Zhu W, Coutard N, Ellena JF, Dickie DA, Gunnoe TB, Goddard WA. Mechanistic Studies of Styrene Production from Benzene and Ethylene Using [(η 2-C 2H 4) 2Rh(μ-OAc)] 2 as Catalyst Precursor: Identification of a Bis-Rh I Mono-Cu II Complex As the Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Charles B. Musgrave
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - Weihao Zhu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Nathan Coutard
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jeffrey F. Ellena
- Biomolecular Magnetic Resonance Facility, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - William A. Goddard
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
11
|
Suslick BA, Tilley TD. Olefin Hydroarylation Catalyzed by a Single-Component Cobalt(-I) Complex. Org Lett 2021; 23:1495-1499. [PMID: 33560852 DOI: 10.1021/acs.orglett.1c00258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A single-component Co(-I) catalyst, [(PPh3)3Co(N2)]Li(THF)3, has been developed for olefin hydroarylations with (N-aryl)aryl imine substrates. More than 40 examples were examined under mild reaction conditions to afford the desired alkyl-arene product in good to excellent yields. Catalysis occurs in a regioselective manner to afford exclusively branched products with styrene-derived substrates or linear products for aliphatic olefins. Electron-withdrawing functional groups (e.g., -F, -CF3, and -CO2Me) were tolerated under the reaction conditions.
Collapse
Affiliation(s)
- Benjamin A Suslick
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Gunnoe TB, Schinski WL, Jia X, Zhu W. Transition-Metal-Catalyzed Arene Alkylation and Alkenylation: Catalytic Processes for the Generation of Chemical Intermediates. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - William L. Schinski
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Xiaofan Jia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Weihao Zhu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
13
|
Luo Z, Whitcomb CA, Kaylor N, Zhang Y, Zhang S, Davis RJ, Gunnoe TB. Oxidative Alkenylation of Arenes Using Supported Rh Materials: Evidence that Active Catalysts are Formed by Rh Leaching. ChemCatChem 2020. [DOI: 10.1002/cctc.202001526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Zhongwen Luo
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| | - Colby A. Whitcomb
- Department of Chemical Engineering University of Virginia Charlottesville VA 22904 USA
| | - Nicholas Kaylor
- Department of Chemical Engineering University of Virginia Charlottesville VA 22904 USA
- Southwest Research Institute San Antonio TX 78238 USA
| | - Yulu Zhang
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| | - Sen Zhang
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| | - Robert J. Davis
- Department of Chemical Engineering University of Virginia Charlottesville VA 22904 USA
| | - T. Brent Gunnoe
- Department of Chemistry University of Virginia Charlottesville VA 22904 USA
| |
Collapse
|
14
|
Kong F, Gu S, Liu C, Dickie DA, Zhang S, Gunnoe TB. Effects of Additives on Catalytic Arene C–H Activation: Study of Rh Catalysts Supported by Bis-phosphine Pincer Ligands. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Fanji Kong
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Shunyan Gu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Chang Liu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sen Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
15
|
Affiliation(s)
- Weihao Zhu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
16
|
Jia X, Frye LI, Zhu W, Gu S, Gunnoe TB. Synthesis of Stilbenes by Rhodium-Catalyzed Aerobic Alkenylation of Arenes via C–H Activation. J Am Chem Soc 2020; 142:10534-10543. [DOI: 10.1021/jacs.0c03935] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaofan Jia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Lucas I. Frye
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Weihao Zhu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Shunyan Gu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
17
|
Gu S, Nielsen RJ, Taylor KH, Fortman GC, Chen J, Dickie DA, Goddard WA, Gunnoe TB. Use of Ligand Steric Properties to Control the Thermodynamics and Kinetics of Oxidative Addition and Reductive Elimination with Pincer-Ligated Rh Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shunyan Gu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Robert J. Nielsen
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - Kathleen H. Taylor
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - George C. Fortman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Junqi Chen
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - William A. Goddard
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|