1
|
Riethmann M, Föhrenbacher SA, Keiling H, Ignat'ev NV, Finze M, Radius U. Fluoride Abstraction Induced by Tris(pentafluoroethyl)difluorophosphorane: A Convenient Way to Synthesize Cationic N-Heterocyclic Carbene- and Cyclic (Alkyl)(amino)carbene-Ligated Copper Alkyne and Arene Complexes. Inorg Chem 2024; 63:8351-8365. [PMID: 38639397 DOI: 10.1021/acs.inorgchem.4c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
We herein report the convenient synthesis of different N-heterocyclic carbene (NHC)- and cyclic (alkyl)(amino)carbene (cAAC)-ligated copper cations using the weakly coordinating tris(pentafluoroethyl)trifluorophosphate counterion (FAP anion, [(C2F5)3PF3]-). The reaction of the fluorido complexes [(carbene)CuF] (carbene = NHC, cAACMe) 2a-2f and the tris(pentafluoroethyl)difluorophosphorane (C2F5)3PF2 in the presence of alkynes or arenes led to fluoride transfer from Cu to the phosphorane with formation of the cationic transition metal complexes [(carbene)Cu(L)]+ and the weakly coordinating counteranion [(C2F5)3PF3]- (FAP). Using this method, the complexes [(IDipp)Cu(L)]+FAP- (IDipp = 1,3-bis(2,6-di-iso-propylphenyl)-imidazolin-2-ylidene; L = PhC≡CPh, 4d; PhC≡CMe, 5d), [(cAACMe)Cu(L)]+FAP- (cAACMe = 1-(2,6-di-iso-propylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-2-ylidene; L = PhC≡CPh, 4f; PhC≡CMe, 5f), [(SIDipp)Cu(C6Me6)]+FAP- (6e), (SIDipp = 1,3-bis(2,6-di-iso-propylphenyl)-imidazolidine-2-ylidene), and [(cAACMe)Cu(C6Me6)]+FAP- (6f) have been synthesized and characterized. The complexes [(IDipp)Cu(C6Me6)]+FAP- (6d) and [(cAACMe)Cu(C6Me6)]+FAP- (6f) have been used as catalysts for the copper(I)-catalyzed cycloaddition of benzyl azide to terminal alkynes.
Collapse
Affiliation(s)
- Melanie Riethmann
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Steffen A Föhrenbacher
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Hannes Keiling
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Nikolai V Ignat'ev
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Consultant, Merck KGaA, Frankfurter Straße 250, Darmstadt 64293, Germany
| | - Maik Finze
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
2
|
Zou Z, Chang W, Zhang W, Ni S, Pan Y, Liang Y, Pan D, Wang Y. CuCF3 Mediated Deoxyfluorination of Redox-active Esters. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
3
|
Kumar Kushvaha S, Mishra A, Roesky HW, Chandra Mondal K. Recent Advances in the Domain of Cyclic (Alkyl)(Amino) Carbenes. Chem Asian J 2022; 17:e202101301. [PMID: 34989475 PMCID: PMC9307053 DOI: 10.1002/asia.202101301] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/25/2021] [Indexed: 12/03/2022]
Abstract
Isolation of cyclic (alkyl) amino carbenes (cAACs) in 2005 has been a major achievement in the field of stable carbenes due to their better electronic properties. cAACs and bicyclic(alkyl)(amino)carbene (BicAAC) in essence are the most electrophilic as well as nucleophilic carbenes are known till date. Due to their excellent electronic properties in terms of nucleophilic and electrophilic character, cAACs have been utilized in different areas of chemistry, including stabilization of low valent main group and transition metal species, activation of small molecules, and catalysis. The applications of cAACs in catalysis have opened up new avenues of research in the field of cAAC chemistry. This review summarizes the major results of cAAC chemistry published until August 2021.
Collapse
Affiliation(s)
| | - Ankush Mishra
- Department of ChemistryIndian Institute of Technology MadrasChennai600036India
| | - Herbert W. Roesky
- Institute of Inorganic ChemistryTammannstrasse 4D-37077GöttingenGermany
| | | |
Collapse
|
4
|
Hölzel T, Belyaev A, Terzi M, Stenzel L, Gernert M, Marian CM, Steffen A, Ganter C. Linear Carbene Pyridine Copper Complexes with Sterically Demanding N, N'-Bis(trityl)imidazolylidene: Syntheses, Molecular Structures, and Photophysical Properties. Inorg Chem 2021; 60:18529-18543. [PMID: 34793149 DOI: 10.1021/acs.inorgchem.1c03082] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sterically demanding carbene ITr (N,N'-bis(triphenylmethyl)imidazolylidene) was used as a ligand for the preparation of luminescent copper(I) complexes of the type [(ITr)Cu(R-pyridine/R'-quinoline)]BF4 (R = H, 4-CN, 4-CHO, 2,6-NH2, and R' = 8-Cl, 6-Me). The selective formation of linear, bis(coordinated) complexes was observed for a series of pyridine and quinoline derivatives. Only in the case of 4-cyanopyridine a one-dimensional coordination polymer was formed, in which the cyano group of the cyanopyridine ligand additionally binds to another Cu atom in a bridging manner, thus leading to a trigonal planar coordination environment. In contrast, employing sterically less demanding monotrityl-substituted carbene 3, no (NHC)Cu-pyridine complexes could be prepared. Instead, a bis-carbene complex [(3)2Cu]PF6 was obtained which showed no luminescence. All linear pyridine/quinoline coordinated complexes show weak emission in solution but intense blue to orange luminescence doped with 10% in PMMA films and in the solid state either from triplet excited states with unusually long lifetimes of up to 4.8 ms or via TADF with high radiative rate constants of up to 1.7 × 105 s-1 at room temperature. Combined density functional theory and multireference configuration interaction calculations have been performed to rationalize the involved photophysics of these complexes. They reveal a high density of low-lying electronic states with mixed MLCT, LLCT, and LC character where the electronic structures of the absorbing and emitting state are not necessarily identical.
Collapse
Affiliation(s)
- Torsten Hölzel
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Andrey Belyaev
- Fakultät für Chemie und Chemische Biologie, TU Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Meryem Terzi
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Laura Stenzel
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Markus Gernert
- Fakultät für Chemie und Chemische Biologie, TU Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Christel M Marian
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Andreas Steffen
- Fakultät für Chemie und Chemische Biologie, TU Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Christian Ganter
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Gauthier R, Tzouras NV, Zhang Z, Bédard S, Saab M, Falivene L, Van Hecke K, Cavallo L, Nolan SP, Paquin JF. Gold N-Heterocyclic Carbene Catalysts for the Hydrofluorination of Alkynes Using Hydrofluoric Acid: Reaction Scope, Mechanistic Studies and the Tracking of Elusive Intermediates. Chemistry 2021; 28:e202103886. [PMID: 34739142 DOI: 10.1002/chem.202103886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/07/2022]
Abstract
An efficient and chemoselective methodology deploying gold-N-heterocyclic carbene (NHC) complexes as catalysts in the hydrofluorination of terminal alkynes using aqueous HF has been developed. Mechanistic studies shed light on an in situ generated catalyst, formed by the reaction of Brønsted basic gold pre-catalysts with HF in water, which exhibits the highest reactivity and chemoselectivity. The catalytic system has a wide alkyl substituted-substrate scope, and stoichiometric as well as catalytic reactions with tailor-designed gold pre-catalysts enable the identification of various gold species involved along the catalytic cycle. Computational studies aid in understanding the chemoselectivity observed through examination of key mechanistic steps for phosphine- and NHC-coordinated gold species bearing the triflate counterion and the elusive key complex bearing a bifluoride counterion.
Collapse
Affiliation(s)
- Raphaël Gauthier
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Nikolaos V Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| | - Ziyun Zhang
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Sandrine Bédard
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Marina Saab
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| | - Laura Falivene
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| | - Luigi Cavallo
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000, Ghent, Belgium
| | - Jean-François Paquin
- PROTEO, CCVC, Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
6
|
Hall JW, Bouchet D, Mahon MF, Whittlesey MK, Cazin CSJ. Synthetic Access to Ring-Expanded N-Heterocyclic Carbene (RE-NHC) Copper Complexes and Their Performance in Click Chemistry. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jonathan W. Hall
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Damien Bouchet
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 283 (S3), Ghent 9000, Belgium
| | - Mary F. Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | | | - Catherine S. J. Cazin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 283 (S3), Ghent 9000, Belgium
| |
Collapse
|
7
|
Novikov MA, Bobrova AY, Mezentsev IA, Medvedev MG, Tomilov YV. (2-Fluoroallyl)boration of Ketones with (2-Fluoroallyl)boronates. J Org Chem 2020; 85:6295-6308. [DOI: 10.1021/acs.joc.9b03445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maxim A. Novikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Angelina Yu. Bobrova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya pl., 125047 Moscow, Russian Federation
| | - Igor A. Mezentsev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya pl., 125047 Moscow, Russian Federation
| | - Michael G. Medvedev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Yury V. Tomilov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
8
|
Cervantes‐Reyes A, Rominger F, Hashmi ASK. Sterically Demanding Ag I and Cu I N-Heterocyclic Carbene Complexes: Synthesis, Structures, Steric Parameters, and Catalytic Activity. Chemistry 2020; 26:5530-5540. [PMID: 32104933 PMCID: PMC7216994 DOI: 10.1002/chem.202000600] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/27/2020] [Indexed: 12/13/2022]
Abstract
The synthesis and full characterization of new air-stable AgI and CuI complexes bearing structurally bulky expanded-ring N-heterocyclic carbene (erNHC) ligands is presented. The condensation of protonated NHC salts with Ag2 O afforded a collection of AgI complexes, and their first use as ligand transfer reagents led to novel isostructural CuI or AuI complexes. In situ deprotonation of the NHC salts in the presence of a copper(I) source, provides a library of new CuI complexes. The solid-state structures feature large N-CNHC -N angles (118-128°) and almost identical angles between the aryl groups on the nitrogen atoms and the plane of the N-C-N unit of the carbene (i.e. torsion angles close to 0°). Among the steric parameters, the percent buried volume (%Vbur ) values span easily in the 50-57 % range, and that one of (9-Dipp)CuBr complex (%Vbur =57.5) overcomes to other known erNHC-metal complexes reported to date. Preliminary catalytic experiments in the copper-catalyzed coupling between N-tosylhydrazone and phenylacetylene, afforded 76-93 % product at the 0.5-2.5 mol % catalyst loading, proving the stability of CuI erNHC complexes at elevated temperatures (100 °C).
Collapse
Affiliation(s)
| | - Frank Rominger
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| |
Collapse
|
9
|
Sharninghausen LS, Brooks AF, Winton WP, Makaravage KJ, Scott PJH, Sanford MS. NHC-Copper Mediated Ligand-Directed Radiofluorination of Aryl Halides. J Am Chem Soc 2020; 142:7362-7367. [PMID: 32250612 DOI: 10.1021/jacs.0c02637] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
[18F]-labeled aryl fluorides are widely used as radiotracers for positron emission tomography (PET) imaging. Aryl halides (ArX) are particularly attractive precursors to these radiotracers, as they are readily available, inexpensive, and stable. However, to date, the direct preparation of [18F]-aryl fluorides from aryl halides remains limited to SNAr reactions between highly activated ArX substrates and K18F. This report describes an aryl halide radiofluorination reaction in which the C(sp2)-18F bond is formed via a copper-mediated pathway. Copper N-heterocyclic carbene complexes serve as mediators for this transformation, using aryl halide substrates with directing groups at the ortho position. This reaction is applied to the radiofluorination of electronically diverse aryl halide derivatives, including the bioactive molecules vismodegib and PH089.
Collapse
Affiliation(s)
- Liam S Sharninghausen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Allen F Brooks
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Wade P Winton
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Katarina J Makaravage
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Peter J H Scott
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|