1
|
Li K, Zhu H, Sun C, Tian G, Ma X, Saravana Kumar P, Weng X, Yang H, Fang R, Liu W, Shang Z, Ma J, Ju J. Metabolic Blockade-Based Genome Mining of Saccharopolyspora erythraea SCSIO 07745: Discovery and Biosynthetic Pathway of Aminoquinolinone Alkaloids Bearing 6/6/5 Tricyclic and 6/6/6/5 Tetracyclic Scaffolds. Org Lett 2025; 27:476-481. [PMID: 39705017 DOI: 10.1021/acs.orglett.4c04491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Metabolic blockade-based genome mining of the marine sediment-derived Saccharopolyspora erythraea SCSIO 07745 led to the discovery of 11 novel aminoquinolinone alkaloids, oxazoquinolinones A-J (1-10), characterized by an oxazolidone[3,2-α]quinoline-5,8-dione scaffold, and oxazoquinolinone K (11), featuring an unprecedented fused 6/6/6/5 tetracyclic core ring system. Additionally, 5 new biosynthetic intermediates or shunt products (12-16) and a known metabolite sannanine (17) were identified. Their structures were elucidated by extensive spectroscopic analyses and a comparison of electronic circular dichroism and single-crystal X-ray diffraction. On the basis of the functional gene analyses and structures of the intermediates or shunt products, plausible biosynthetic pathways for compounds 1-17 were proposed. Additionally, oxazoquinolinone K (11) obviously inhibited cell invasion of human glioma cell line LN229 cells at 10 μM.
Collapse
Affiliation(s)
- Kunlong Li
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Hongjie Zhu
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Changli Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, Guangdong 510301, China
| | - Ge Tian
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xuan Ma
- Equipment Public Service Center of South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, Guangdong 510301, China
| | - Pachaiyappan Saravana Kumar
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, Guangdong 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao, Shandong 266400, China
| | - Xiang Weng
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Hu Yang
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Runping Fang
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Weilong Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Zhuo Shang
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, Guangdong 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao, Shandong 266400, China
| | - Jianhua Ju
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, Guangdong 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao, Shandong 266400, China
| |
Collapse
|
2
|
Dong Y, Jin E, Wang R, Bao Y, Li H. New Olimycins from a Cold-Seep-Derived Streptomyces olivaceus. Chem Biodivers 2023; 20:e202300689. [PMID: 37354440 DOI: 10.1002/cbdv.202300689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Cold-seeps are areas of the ocean floor in which hydrogen sulfide and methane are released into the open water. The cold-seep microbes are an emerging source of novel bioactive natural products. Four new ansa-ring opened linear ansamycin analogues, named olimycins E-H (1-4) were isolated from the cold-seep-derived Streptomyces olivaceus OUCLQ19-3. The planar and stereochemical structures of the isolated compounds were elucidated based on extensive MS and NMR spectroscopic analyses together with ECD calculations.
Collapse
Affiliation(s)
- Yun Dong
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Enjing Jin
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Runyi Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yilei Bao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
3
|
Guo ZK, Wang YC, Tan YZ, Abulaizi A, Xiong ZJ, Zhang SQ, Yang Y, Yang LY, Shi J. Nagimycins A and B, Antibacterial Ansamycin-Related Macrolactams from Streptomyces sp. NA07423. Org Lett 2023; 25:4203-4207. [PMID: 37232514 DOI: 10.1021/acs.orglett.3c01539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chemical investigation of Streptomyces sp. NA07423 led to the discovery of two unreported macrolactams, nagimycins A (1) and B (2). Their structures were elucidated by NMR, HRESIMS, X-ray crystallography, and comparison of experimental and theoretical ECD spectra. The nagimycins have a unique butenolide moiety rarely found in ansamycin antibiotics. Genome analysis revealed the putative biosynthetic gene cluster for nagimycins, and a likely biosynthetic pathway was proposed. Notably, compounds 1 and 2 exhibited potent antibacterial activity against two pathogenic Xanthomonas bacteria.
Collapse
Affiliation(s)
- Zhi Kai Guo
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yong Chao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ying Zi Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ailiman Abulaizi
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zi Jun Xiong
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shi Qing Zhang
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yang Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences & National Collection of Microbial Resource for Fertilizer (Hainan), Haikou 571101, China
| | - La Ying Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences & National Collection of Microbial Resource for Fertilizer (Hainan), Haikou 571101, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Yi W, Newaz AW, Yong K, Ma M, Lian XY, Zhang Z. New Hygrocins K-U and Streptophenylpropanamide A and Bioactive Compounds from the Marine-Associated Streptomyces sp. ZZ1956. Antibiotics (Basel) 2022; 11:1455. [PMID: 36358111 PMCID: PMC9686540 DOI: 10.3390/antibiotics11111455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 05/12/2024] Open
Abstract
Marine-derived Streptomyces actinomycetes are one of the most important sources for the discovery of novel bioactive natural products. This study characterized the isolation, structural elucidation and biological activity evaluation of thirty compounds, including twelve previously undescribed compounds, namely hygrocins K-U (5-13, 17 and 18) and streptophenylpropanamide A (23), from the marine-associated actinomycete Streptomyces sp. ZZ1956. Structures of the isolated compounds were determined by a combination of extensive NMR spectroscopic analyses, HRESIMS data, the Mosher's method, ECD calculations, single crystal X-ray diffraction and comparison with reported data. Hygrocins C (1), D (2), F (4), N (8), Q (11) and R (12), 2-acetamide-6-hydroxy-7-methyl-1,4-naphthoquinone (22), echoside C (27), echoside A (28) and 11,11'-O-dimethylelaiophylin (30) had antiproliferative activity (IC50: 0.16-19.39 μM) against both human glioma U87MG and U251 cells with hygrocin C as the strongest active compound (IC50: 0.16 and 0.35 μM, respectively). The analysis of the structure-activity relationship indicated that a small change in the structures of the naphthalenic ansamycins had significant influence on their antiglioma activities. Hygrocins N (8), O (9), R (12), T (17) and U (18), 2-amino-6-hydroxy-7-methyl-1,4-naphthoquinone (21), 2-acetamide-6-hydroxy-7-methyl-1,4-naphthoquinone (22), 3'-methoxy(1,1',4',1″-terphenyl)-2',6'-diol (26), echoside C (27) and echoside A (28) showed antibacterial activity against methicillin-resistant Staphylococcus aureus and Escherichia coli with MIC values of 3-48 μg/mL.
Collapse
Affiliation(s)
- Wenwen Yi
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China
| | - Asif Wares Newaz
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China
| | - Kuo Yong
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China
| | - Mingzhu Ma
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China
- Zhejiang Marine Development Research Institute, Zhoushan 316000, China
| | - Xiao-Yuan Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China
| |
Collapse
|
5
|
Zhang H, Zhang C, Li Q, Ma J, Ju J. Metabolic Blockade-Based Genome Mining Reveals Lipochain-Linked Dihydro-β-alanine Synthetases Involved in Autucedine Biosynthesis. Org Lett 2022; 24:5535-5540. [PMID: 35876054 DOI: 10.1021/acs.orglett.2c01957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huaran Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Rd., Nansha District, Guangzhou 511458, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Chunyan Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Rd., Nansha District, Guangzhou 511458, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Rd., Nansha District, Guangzhou 511458, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Rd., Nansha District, Guangzhou 511458, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| |
Collapse
|
6
|
Skrzypczak N, Przybylski P. Modifications, biological origin and antibacterial activity of naphthalenoid ansamycins. Nat Prod Rep 2022; 39:1653-1677. [PMID: 35244668 DOI: 10.1039/d2np00002d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2011 to 2021Structural division of natural naphthalenoid ansamycins, regarding the type of the core and length of the ansa chain, and their biosynthetic pathways in microorganisms are discussed. The great biosynthetic plasticity of natural naphthalenoid ansamycins is reflected in their structural variety due to the alterations within ansa bridge or naphthalenoid core portions. A comparison between the biological potency of natural and semisynthetic naphthalenoid ansamycins was performed and discussed in relation to the molecular targets in cells. The antibacterial potency of naphthalenoid ansamycins seems to be dependent on the ansa chain length and conformational flexibility - the higher flexibility of the ansa chain the better biological outcome is noted.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| |
Collapse
|
7
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2020. [DOI: 10.1039/d0np90014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as flavipeside A from Aspergillus flavipes.
Collapse
|