1
|
Sheng X, Yang L, Han JY, Yu X, Cui HL. CuI-Catalyzed Dearomatization/Peroxidation/Cyclization Cascade of Pyrrole-Tethered Indoles. J Org Chem 2025; 90:3639-3652. [PMID: 40014766 DOI: 10.1021/acs.joc.4c02977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
A mild CuI-catalyzed dearomatization/peroxidation/cyclization cascade of pyrrole-tethered indoles has been reached, providing peroxide-incorporated indolizino[8,7-b]indole derivatives in acceptable to good yields (46-76%). Dehydrogenated peroxide can be obtained by the use of a FeCl3/TBHP (tBuOOH)/2,2,2-trifluoroethanol (TFE) system at 50 °C.
Collapse
Affiliation(s)
- Xue Sheng
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Liu Yang
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Jia-Yi Han
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Xin Yu
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| |
Collapse
|
2
|
Pal A, Mondal B, Sau S, De S, Thakur A. Visible Light-Mediated Co(II) Catalyzed Synthesis of α,β-Epoxy Ketones by Oxidative Coupling of Alkenes and Aldehydes in Water. Org Lett 2024. [PMID: 39287662 DOI: 10.1021/acs.orglett.4c03098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
A one-step, two-component visible light-mediated CoCl2·6H2O-catalyzed oxidative acylation of alkenes by aldehydes to synthesize α,β-epoxy ketone has been achieved in water at room temperature. The photocatalytic activity of Co(II) presented a remarkable achievement for synthesis of α,β-epoxy ketones from aldehydes and olefins, with a wide substrate compatibility including aromatic, heteroaromatic and aliphatic aldehydes, styrenes with both electron-donating and withdrawing groups, α-substituted styrenes, stilbene, acrylates, and even the challenging unactivated aliphatic alkenes. Mechanistic studies including radical trapping experiments, intermediate detection by GCMS, Hammett analysis, and DFT studies unveil the nature of the photocatalytic pathway.
Collapse
Affiliation(s)
- Adwitiya Pal
- Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Bijan Mondal
- Institute of Inorganic Chemistry, Universität Regensburg, Regensburg-93040, Germany
| | - Subham Sau
- Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Soumita De
- Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India
| |
Collapse
|
3
|
Huang X, Zhou J, Pei SC, Cui HL. TBHP/Et 3N-Promoted Chemoselective Formylation and Peroxidation of Pyrrolo[2,1- a]isoquinolines. J Org Chem 2024; 89:6353-6363. [PMID: 38625867 DOI: 10.1021/acs.joc.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
An efficient formylation of pyrrolo[2,1-a]isoquinoline derivatives has been reached by the use of TBHP (tBuOOH) and Et3N as the mediator. In this strategy, CHO and CDO can be readily incorporated into heteroarenes by the utilization of CHCl3 and CDCl3 as the carbonyl sources. Interestingly, a solvent-controlled chemoselectivity was observed. The use of PhCl as a solvent resulted in dearomatization and peroxidation of pyrrolo[2,1-a]isoquinolines, delivering functionalized peroxides in 53-64% yields.
Collapse
Affiliation(s)
- Xiang Huang
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Jing Zhou
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Shu-Chen Pei
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| |
Collapse
|
4
|
Huang X, Yu AN, Yang D, Gao X, Liang ST, Pei SC, Cui HL. Iron-Catalyzed Synthesis of Peroxylpyrrolo[2,1- a]isoquinolines through Oxidative Dearomatization. J Org Chem 2023; 88:15326-15334. [PMID: 37878683 DOI: 10.1021/acs.joc.3c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A mild late-stage modification of pyrrolo[2,1-a]isoquinolines was established through iron-catalyzed oxidative dearomatization and peroxidation. Peroxylated pyrroloisoquinolines have been prepared readily with hydroperoxide in low to good yields (up to 72%) at room temperature. Interestingly, the treatment of fully aromatized pyrrolo[1,2-a]quinolines under the current reaction system resulted in the formation of ring-opening products.
Collapse
Affiliation(s)
- Xiang Huang
- College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P.R. China
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P.R. China
| | - An-Ni Yu
- College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P.R. China
| | - De Yang
- College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P.R. China
| | - Xin Gao
- College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P.R. China
| | - Shu-Ting Liang
- College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P.R. China
| | - Shu-Chen Pei
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P.R. China
| | - Hai-Lei Cui
- College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P.R. China
| |
Collapse
|
5
|
Ghosh D, Molla SA, Ghosh NN, Khamarui S, Maiti DK. Cu II-Catalyzed cis-Selective Synthesis of Ketoepoxides from Phenacyl Bromides and Water. J Org Chem 2023. [PMID: 37379249 DOI: 10.1021/acs.joc.2c02835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
A verity of α,β-ketoepoxides was synthesized using a CuII-catalyzed oxidative C-C/O-C coupled cyclization strategy with high yield and cis-selectivity. Water is used as the source of oxygen and phenacyl bromide as the carbon in the valuable epoxides. The self-coupling method was extended to cross-coupling between phenacyl bromides with benzyl bromides. A high cis-diastereoselectivity was observed in all the synthesized ketoepoxides. Control experiments and density functional theory (DFT) study were performed to understand the CuII-CuI transition mechanism.
Collapse
Affiliation(s)
- Debasish Ghosh
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Sabir A Molla
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | | | - Saikat Khamarui
- Department of Chemistry, Government General Degree College, Kalna-1, Burdwan 713405, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
6
|
Sun Z, Chen L, Qiu KX, Liu B, Li H, Yu F. Enantioselective Peroxidation of C-Alkynyl Imines Enabled by Chiral BINOL Calcium Phosphate. Chem Commun (Camb) 2022; 58:3035-3038. [DOI: 10.1039/d1cc07156d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we reported a catalytic enantioselective addition of C-alkynyl imines with hydroperoxides catalyzd by chiral BINOL calcium phosphate, affording a broad range of enantioenriched α-peroxy propargylamines in good yields (80-99%)...
Collapse
|
7
|
Okamura H, Yasuno Y, Nakayama A, Kumadaki K, Kitsuwa K, Ozawa K, Tamura Y, Yamamoto Y, Shinada T. Selective oxidation of alcohol- d 1 to aldehyde- d 1 using MnO 2. RSC Adv 2021; 11:28530-28534. [PMID: 35478564 PMCID: PMC9037989 DOI: 10.1039/d1ra05405h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
The selective oxidation of alcohol-d1 to prepare aldehyde-d1 was newly developed by means of NaBD4 reduction/activated MnO2 oxidation. Various aldehyde-d1 derivatives including aromatic and unsaturated aldehyde-d1 can be prepared with a high deuterium incorporation ratio (up to 98% D). Halogens (chloride, bromide, and iodide), alkene, alkyne, ester, nitro, and cyano groups in the substrates are tolerated under the mild conditions. A facile method for deutrium incorporation into aldehydes by mild reduction of NaBD4 of aldehydes and MnO2 oxidation (98% D) is disclosed.![]()
Collapse
Affiliation(s)
- Hironori Okamura
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Yoko Yasuno
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Atsushi Nakayama
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Katsushi Kumadaki
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Kohei Kitsuwa
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Keita Ozawa
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Yusaku Tamura
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Yuki Yamamoto
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| |
Collapse
|
8
|
Zhang LW, Wang L, Ji N, Dai SY, He W. Asymmetric epoxidation of α,β-unsaturated ketones via an amine-thiourea dual activation catalysis. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|