1
|
Huang AX, Li R, Lv QY, Yu B. Photocatalytic Sulfonylation: Innovations and Applications. Chemistry 2024; 30:e202402416. [PMID: 39003604 DOI: 10.1002/chem.202402416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
Photosynthesis, converting sustainable solar energy into chemical energy, has emerged as a promising craft to achieve diverse organic transformations due to its mild reaction conditions, sustainability, and high efficiency. The synthesis of sulfonated compounds has drawn significant attention in the pharmaceuticals, agrochemicals, and materials industries due to the unique structure and electronic properties of the sulfonyl groups. Over the past decades, many photocatalytic sulfonylation reactions have been developed. In this review, the recent advances in photocatalyzed sulfonylation have been reviewed since 2020, with a primary focus on discussing reaction design and mechanism.
Collapse
Affiliation(s)
- An-Xiang Huang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Qi-Yan Lv
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing, 210037, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
2
|
Li HP, Wu XL, Zhan G, Fu XJ, Chen JH, He XH, Han B. Construction of cyclopenta[ b]dihydronaphthofurans via TsOH-catalyzed consecutive biscyclization of dithioallylic alcohols and 1-styrylnaphthols. Chem Commun (Camb) 2023; 59:2275-2278. [PMID: 36734602 DOI: 10.1039/d2cc06324g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An efficient TsOH-catalyzed consecutive biscyclization cascade reaction of dithioallylic alcohols with 1-styrylnaphthols is demonstrated for the concise construction of pharmaceutically important cyclopenta[b]dihydrobenzofuran scaffolds. This process involved an acid-catalyzed (3+2) cycloaddition followed by an intramolecular nucleophilic addition, providing cyclopenta[b]dihydronaphthofurans bearing a tetra- or fully substituted cyclopentane core in good yields with exclusive diastereoselectivities (>20 : 1 d.r.).
Collapse
Affiliation(s)
- He-Ping Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Xiao-Ling Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Xue-Ju Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Jian-Hua Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| |
Collapse
|
3
|
Chniti S, Kollár L, Bényei A, Dörnyei Á, Takács A. Highly Chemoselective One‐Step Synthesis of Novel
N
‐Substituted‐Pyrrolo[3,4‐b]quinoline‐1,3‐diones via Palladium‐Catalyzed Aminocarbonylation/Carbonylative Cyclisation Sequence. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Sami Chniti
- Department of General and Inorganic Chemistry Faculty of Sciences University of Pécs Ifjúság útja 6. 7624 Pécs Hungary
| | - László Kollár
- Department of General and Inorganic Chemistry Faculty of Sciences University of Pécs Ifjúság útja 6. 7624 Pécs Hungary
- János Szentágothai Research Centre University of Pécs Ifjúság útja 20. 7624 Pécs Hungary
- ELKH-PTE Research Group for Selective Chemical Syntheses Ifjúság útja 6. 7624 Pécs Hungary
| | - Attila Bényei
- Department of Pharmaceutical Chemistry University of Debrecen Egyetem tér 1. H-4032 Pécs Hungary
| | - Ágnes Dörnyei
- Department of Analytical and Environmental Chemistry Faculty of Sciences University of Pécs Ifjúság útja 6. 7624 Pécs Hungary
| | - Attila Takács
- Department of General and Inorganic Chemistry Faculty of Sciences University of Pécs Ifjúság útja 6. 7624 Pécs Hungary
- János Szentágothai Research Centre University of Pécs Ifjúság útja 20. 7624 Pécs Hungary
| |
Collapse
|
4
|
Moskalik MY, Astakhova VV. Triflamides and Triflimides: Synthesis and Applications. Molecules 2022; 27:5201. [PMID: 36014447 PMCID: PMC9414225 DOI: 10.3390/molecules27165201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Among the variety of sulfonamides, triflamides (CF3SO2NHR, TfNHR) occupy a special position in organic chemistry. Triflamides are widely used as reagents, efficient catalysts or additives in numerous reactions. The reasons for the widespread use of these compounds are their high NH-acidity, lipophilicity, catalytic activity and specific chemical properties. Their strong electron-withdrawing properties and low nucleophilicity, combined with their high NH-acidity, makes it possible to use triflamides in a vast variety of organic reactions. This review is devoted to the synthesis and use of N-trifluoromethanesulfonyl derivatives in organic chemistry, medicine, biochemistry, catalysis and agriculture. Part of the work is a review of areas and examples of the use of bis(trifluoromethanesulfonyl)imide (triflimide, (CF3SO2)2NH, Tf2NH). Being one of the strongest NH-acids, triflimide, and especially its salts, are widely used as catalysts in cycloaddition reactions, Friedel-Crafts reactions, condensation reactions, heterocyclization and many others. Triflamides act as a source of nitrogen in C-amination (sulfonamidation) reactions, the products of which are useful building blocks in organic synthesis, catalysts and ligands in metal complex catalysis, and have found applications in medicine. The addition reactions of triflamide in the presence of oxidizing agents to alkenes and dienes are considered separately.
Collapse
Affiliation(s)
- Mikhail Y. Moskalik
- Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | | |
Collapse
|
5
|
Li L, Li JZ, Sun YB, Luo CM, Qiu H, Tang K, Liu H, Wei WT. Visible-Light-Catalyzed Tandem Radical Addition/1,5-Hydrogen Atom Transfer/Cyclization of 2-Alkynylarylethers with Sulfonyl Chlorides. Org Lett 2022; 24:4704-4709. [PMID: 35724683 DOI: 10.1021/acs.orglett.2c01977] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel visible-light-catalyzed tandem radical addition/1,5-hydrogen atom transfer/cyclization cascade of 2-alkynylarylethers with sulfonyl chlorides in 2-methyltetrahydrofuran was developed under photocatalyst- and additive-free conditions. This reaction relies on unique energy transfer and solvent-radical relay strategies to generate sulfonyl radicals for the preparation of a series of sulfonyl-functionalized dihydrobenzofurans in moderate to high yields catalyzed by visible light or solar radiation.
Collapse
Affiliation(s)
- Long Li
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiao-Zhe Li
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yong-Bin Sun
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chun-Mei Luo
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hui Qiu
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Keqi Tang
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hongxin Liu
- College of Chemistry and Materials Engineering, Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325035, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
6
|
González JM, Rubial B, Ballesteros A. Silylium‐Catalyzed Alkynylation and Etherification Reactions of Benzylic Acetates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- José Manuel González
- Universidad de Oviedo Quimica Organica e Inorganica Julian Claveria 8 33006 Oviedo SPAIN
| | - Belén Rubial
- Universidad de Oviedo Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles" SPAIN
| | - Alfredo Ballesteros
- Universidad de Oviedo Departamento de Química Orgánica e Inorgánica and Instituto de Química Organometálica "Enrique Moles" SPAIN
| |
Collapse
|
7
|
Ghosh A, Dey R, Banerjee P. Relieving the stress together: annulation of two different strained rings towards the formation of biologically significant heterocyclic scaffolds. Chem Commun (Camb) 2021; 57:5359-5373. [PMID: 33969833 DOI: 10.1039/d1cc00998b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Small carbo- and heterocycles have become versatile building blocks owing to their intrinsic ring strain and ease of synthesis. However, the traditional approaches of heterocycle synthesis involved the combination of one strained-carbocycle or heterocycle with one unsaturated molecule. On the contrary, there is an exciting possibility of combining two different strained rings to furnish varieties of heterocycles, where one of the strained rings can act as a valuable alternative to the unsaturated molecule. These strategies are also useful to access multi-functionalized rings. Despite these distinctive synthetic benefits, this chemistry has not drawn considerable attention of the community. In this minireview, we explicitly choose this topic to reveal the unexplored possibilities with these different strained rings. This minireview provides comprehensive details with the mechanistic rationale about the reactivity of these pairs of small rings when they are allowed to react together in the presence of different Lewis acids. Subsequently, it will also open a new avenue for heterocycle synthesis.
Collapse
Affiliation(s)
- Asit Ghosh
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Raghunath Dey
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
8
|
Zhang XM, Li BS, Wang SH, Zhang K, Zhang FM, Tu YQ. Recent development and applications of semipinacol rearrangement reactions. Chem Sci 2021; 12:9262-9274. [PMID: 34349896 PMCID: PMC8314203 DOI: 10.1039/d1sc02386a] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/04/2021] [Indexed: 11/21/2022] Open
Abstract
As has been well-recognized, semipinacol rearrangement functions as an exceptionally useful methodology in the synthesis of β-functionalized ketones, creation of quaternary carbon centers, and construction of challenging carbocycles. Due to their versatile utilities in organic synthesis, development of novel rearrangement reactions has been a vibrant topic that continues to shape the research field. Recent breakthroughs in novel electrophiles, tandem processes, and enantioselective catalytic transformations further enrich the toolbox of this chemistry and spur the strategic applications of this methodology in natural product synthesis. These achievements will be discussed in this minireview.
Collapse
Affiliation(s)
- Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry and School of Pharmacy, Lanzhou University Lanzhou 730000 P. R. China
| | - Bao-Sheng Li
- School of Chemistry and Chemical Engineering, Chongqing University Chongqing 400030 P. R. China
| | - Shao-Hua Wang
- State Key Laboratory of Applied Organic Chemistry and School of Pharmacy, Lanzhou University Lanzhou 730000 P. R. China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong 529020 P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry and School of Pharmacy, Lanzhou University Lanzhou 730000 P. R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry and School of Pharmacy, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
9
|
Luo WF, Ye LW, Li L, Qian PC. Regio- and diastereoselective synthesis of trans-3,4-diaryldihydrocoumarins via metal-free [4+2] annulation of ynamides with o-hydroxybenzyl alcohols. Chem Commun (Camb) 2021; 57:5032-5035. [PMID: 33881063 DOI: 10.1039/d1cc00687h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An efficient regio- and diastereoselective method for the construction of valuable trans-3,4-diaryldihydrocoumarins via metal-free [4+2] annulation of ynamides with o-hydroxybenzyl alcohols has been developed. Ynamides are first treated as 2-π partners to react with o-hydroxybenzyl alcohols via traceless sulfonamide directing groups, affording trans-3,4-diaryldihydrocoumarins in good yields with high regio- and diastereoselectivities. This metal-free methodology is also characterized by a wide substrate scope, good functional group tolerance, and efficiency on a gram scale.
Collapse
Affiliation(s)
- Wen-Feng Luo
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | | | | | | |
Collapse
|
10
|
Du M, An L, Xu J, Guo Y. Euphnerins A and B, Diterpenoids with a 5/6/6 Rearranged Spirocyclic Carbon Skeleton from the Stems of Euphorbia neriifolia. JOURNAL OF NATURAL PRODUCTS 2020; 83:2592-2596. [PMID: 32822173 DOI: 10.1021/acs.jnatprod.0c00249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Euphnerins A (1) and B (2), two extremely modified diterpenoids possessing an unprecedented 5/6/6 rearranged spirocyclic carbon skeleton, and a biosynthetically related known diterpenoid (3) were purified from the stems of Euphorbia neriifolia. Their structures were identified by NMR experiments and X-ray diffraction analysis, as well as experimental and calculated electronic circular dichroism data comparison. A putative biosynthetic relationship of 1 and 2 with their presumed precursor 3 is proposed. Compound 1 showed NO inhibitory effects in lipopolysaccharide-stimulated BV-2 cells with an IC50 value of 22.4 μM.
Collapse
Affiliation(s)
- Min Du
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
11
|
Kurimoto M, Nakajima D, Nishiyama Y, Yokoshima S. Semipinacol Rearrangement Induced by Cleavage of Dibromocyclopropane. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michitaka Kurimoto
- Graduate School of Pharmaceutical Sciences Nagoya University Furo‐cho, Chikusa‐ku 464‐8601 Nagoya Japan
| | - Daisuke Nakajima
- Graduate School of Pharmaceutical Sciences Nagoya University Furo‐cho, Chikusa‐ku 464‐8601 Nagoya Japan
| | - Yoshitake Nishiyama
- Graduate School of Pharmaceutical Sciences Nagoya University Furo‐cho, Chikusa‐ku 464‐8601 Nagoya Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences Nagoya University Furo‐cho, Chikusa‐ku 464‐8601 Nagoya Japan
| |
Collapse
|
12
|
Xiang M, Li CY, Song XJ, Zou Y, Huang ZC, Li X, Tian F, Wang LX. Organocatalytic and enantioselective [4+2] cyclization between hydroxymaleimides and ortho-hydroxyphenyl para-quinone methide-selective preparation of chiral hemiketals. Chem Commun (Camb) 2020; 56:14825-14828. [DOI: 10.1039/d0cc06777f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A highly effective and enantioselective organocatalytic [4+2] cyclization has been disclosed, and a series of new chiral hemiketals containing chromane and succinimide frameworks have been firstly prepared in excellent results with 100% atom efficacy.
Collapse
Affiliation(s)
- Min Xiang
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Chen-Yi Li
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Xiang-Jia Song
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Ying Zou
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Zhi-Cheng Huang
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Xia Li
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Fang Tian
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Li-Xin Wang
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| |
Collapse
|