1
|
You Y, Zhang XJ, Xiao W, Kunthic T, Xiang Z, Xu C. Unified enantiospecific synthesis of drimane meroterpenoids enabled by enzyme catalysis and transition metal catalysis. Chem Sci 2024; 15:19307-19314. [PMID: 39568920 PMCID: PMC11575645 DOI: 10.1039/d4sc06060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
Merging the advantages of biocatalysis and chemocatalysis in retrosynthetic analysis can significantly improve the efficiency and selectivity of natural product synthesis. Here, we describe a unified approach for the synthesis of drimane meroterpenoids by combining heterologous biosynthesis, enzymatic hydroxylation, and transition metal catalysis. In phase one, drimenol was produced by engineering a biosynthetic pathway in Escherichia coli. Cytochrome P450BM3 from Bacillus megaterium was engineered to catalyze the C-3 hydroxylation of drimenol. By means of nickel-catalyzed reductive coupling, six drimane meroterpenoids (+)-hongoquercins A and B, (+)-ent-chromazonarol, 8-epi-puupehenol, (-)-pelorol, and (-)-mycoleptodiscin A were synthesized in a concise and enantiospecific manner. This strategy offers facile access to the congeners of the drimane meroterpenoid family and lays the foundation for activity optimization.
Collapse
Affiliation(s)
- Yipeng You
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology 1088 Xueyuan Avenue Shenzhen P. R. China
| | - Xue-Jie Zhang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen Nanshan District Shenzhen 518055 P. R. China
| | - Wen Xiao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen Nanshan District Shenzhen 518055 P. R. China
| | - Thittaya Kunthic
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen Nanshan District Shenzhen 518055 P. R. China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen Nanshan District Shenzhen 518055 P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Gaoke Innovation Center Guangqiao Road, Guangming District Shenzhen 518132 P. R. China
| | - Chen Xu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology 1088 Xueyuan Avenue Shenzhen P. R. China
| |
Collapse
|
2
|
Mushtaq A, Zahoor AF, Bilal M, Hussain SM, Irfan M, Akhtar R, Irfan A, Kotwica-Mojzych K, Mojzych M. Sharpless Asymmetric Dihydroxylation: An Impressive Gadget for the Synthesis of Natural Products: A Review. Molecules 2023; 28:2722. [PMID: 36985698 PMCID: PMC10051988 DOI: 10.3390/molecules28062722] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Sharpless asymmetric dihydroxylation is an important reaction in the enantioselective synthesis of chiral vicinal diols that involves the treatment of alkene with osmium tetroxide along with optically active quinine ligand. Sharpless introduced this methodology after considering the importance of enantioselectivity in the total synthesis of medicinally important compounds. Vicinal diols, produced as a result of this reaction, act as intermediates in the synthesis of different naturally occurring compounds. Hence, Sharpless asymmetric dihydroxylation plays an important role in synthetic organic chemistry due to its undeniable contribution to the synthesis of biologically active organic compounds. This review emphasizes the significance of Sharpless asymmetric dihydroxylation in the total synthesis of various natural products, published since 2020.
Collapse
Affiliation(s)
- Aqsa Mushtaq
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Bilal
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Syed Makhdoom Hussain
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Rabia Akhtar
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Department of Chemistry, Superior University, Faisalabad 38000, Pakistan
| | - Ali Irfan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Katarzyna Kotwica-Mojzych
- Laboratory of Experimental Cytology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-Go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
3
|
Yu MZ, Chen KY, Zhang YB, Zhang CX, Xiang Z. Enantioselective conjugate addition of malonates to α,β-unsaturated aldehydes catalysed by 4-oxalocrotonate tautomerase. Org Biomol Chem 2023; 21:2086-2090. [PMID: 36806856 DOI: 10.1039/d3ob00111c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The enantioselective conjugate addition of malonates to α,β-unsaturated aldehydes catalysed by 4-oxalocrotonate tautomerase is described. High conversions, high enantioselectivities, and good isolation yields were achieved for a range of substrates. We further completed a four-step synthesis of the antidepressant (+)-femoxetine by utilizing this reaction and an enzymatic reductive amination reaction.
Collapse
Affiliation(s)
- Ming-Zhu Yu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Kai-Yue Chen
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yi-Bin Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Chang-Xuan Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China. .,Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China.,AI for Science (AI4S) Preferred Program, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
4
|
ZHANG H, TANG X. Combining microbial and chemical syntheses for the production of complex natural products. Chin J Nat Med 2022; 20:729-736. [DOI: 10.1016/s1875-5364(22)60191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 11/28/2022]
|
5
|
Vollmann DJ, Winand L, Nett M. Emerging concepts in the semisynthetic and mutasynthetic production of natural products. Curr Opin Biotechnol 2022; 77:102761. [DOI: 10.1016/j.copbio.2022.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/18/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
|
6
|
Kumar P, Kaur N, Kumar R, Banerjee P. α ,β-Unsaturated Carbonyls for One-Pot Transition-Metal-Free Access to 3,6-Dihydro-2 H-pyrans. J Org Chem 2022; 87:7167-7178. [PMID: 35579030 DOI: 10.1021/acs.joc.2c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient protocol has been developed for accessing mono-, di-, and trisubstituted 3,6-dihydro-2H-pyran derivatives by simply subjecting α,β-unsaturated carbonyls to the carefully optimized Corey-Chaykovsky reaction conditions. The strategy provides selectively substituted dihydropyran derivatives in good to excellent yields with a broad substrate scope under very mild reaction conditions. Easy transformation of the final 3,6-dihydro-2H-pyran to the valued 5,6-dihydro-2H-pyran-2-one and tetrahydro-2H-pyran derivatives expanded the scope of this methodology to diverse oxacycles. Further, the developed strategy also found application in a two-step route to racemic goniothalamin, which is widely studied for its cytotoxic behavior.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Navpreet Kaur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Rakesh Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
7
|
Sangster JJ, Marshall JR, Turner NJ, Mangas‐Sanchez J. New Trends and Future Opportunities in the Enzymatic Formation of C-C, C-N, and C-O bonds. Chembiochem 2022; 23:e202100464. [PMID: 34726813 PMCID: PMC9401909 DOI: 10.1002/cbic.202100464] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Indexed: 01/04/2023]
Abstract
Organic chemistry provides society with fundamental products we use daily. Concerns about the impact that the chemical industry has over the environment is propelling major changes in the way we manufacture chemicals. Biocatalysis offers an alternative to other synthetic approaches as it employs enzymes, Nature's catalysts, to carry out chemical transformations. Enzymes are biodegradable, come from renewable sources, operate under mild reaction conditions, and display high selectivities in the processes they catalyse. As a highly multidisciplinary field, biocatalysis benefits from advances in different areas, and developments in the fields of molecular biology, bioinformatics, and chemical engineering have accelerated the extension of the range of available transformations (E. L. Bell et al., Nat. Rev. Meth. Prim. 2021, 1, 1-21). Recently, we surveyed advances in the expansion of the scope of biocatalysis via enzyme discovery and protein engineering (J. R. Marshall et al., Tetrahedron 2021, 82, 131926). Herein, we focus on novel enzymes currently available to the broad synthetic community for the construction of new C-C, C-N and C-O bonds, with the purpose of providing the non-specialist with new and alternative tools for chiral and sustainable chemical synthesis.
Collapse
Affiliation(s)
- Jack J. Sangster
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - James R. Marshall
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Nicholas J. Turner
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Juan Mangas‐Sanchez
- Institute of Chemical Synthesis and Homogeneous CatalysisSpanish National Research Council (CSIC)Pedro Cerbuna 1250009ZaragozaSpain
- ARAID FoundationZaragozaSpain
| |
Collapse
|
8
|
Jin M, Tang C, Li Y, Yang S, Yang YT, Peng L, Li XN, Zhang W, Zuo Z, Gagosz F, Wang LL. Enantioselective access to tricyclic tetrahydropyran derivatives by a remote hydrogen bonding mediated intramolecular IEDHDA reaction. Nat Commun 2021; 12:7188. [PMID: 34893616 PMCID: PMC8664811 DOI: 10.1038/s41467-021-27521-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/25/2021] [Indexed: 11/22/2022] Open
Abstract
Inverse-electron-demand-hetero-Diels-Alder reactions of alkenes with α,β-unsaturated keto compounds allow rapid access to the tetrahydropyran ring found in numerous natural products and bioactive molecules. Despite its synthetic interest, catalytic asymmetric versions of this process remain underdeveloped, especially regarding the use of non-activated alkenes reacting with α,β-unsaturated ketone or aldehyde, for which no report can be found in the literature. Herein, we describe the catalytic inverse-electron-demand-hetero-Diels-Alder reactions between neutral alkenes and an α,β-unsaturated ketones or aldehydes to produce a variety of trans-fused [5,6,8] tricyclic structures containing a central, chiral tetrahydropyran ring. This complex transformation, which is achieved using a chiral phosphoric acid, allows for the formation of four stereogenic centers in a single step with high regio-, diastereo- and enantioselectivity (up to 99% ee). Such level of stereocontrol could be achieved by a key remote double hydrogen atom bonding interaction between the linear substrate and the catalyst. Although the hetero-Diels–Alder reaction is a staple of organic chemistry, catalytic asymmetric versions of the inverse-electron demand variant often require specially engineered substrates for the reaction to work. Here the authors cyclize non-activated alkenes with α,β-unsaturated ketones or aldehydes to form chiral fused heterocycles using a chiral phosphoric acid catalyst.
Collapse
Affiliation(s)
- Min Jin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, PR China
| | - Congyun Tang
- School of Food and Chemical Engineering, Shaoyang University, 422000, Shaoyang, PR China
| | - Yingying Li
- School of Chemical Engineering, Sichuan University of Science & Engineering, 643000, Zigong, PR China
| | - Shuai Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, PR China
| | - Ying-Tao Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, PR China
| | - Lin Peng
- School of Food and Chemical Engineering, Shaoyang University, 422000, Shaoyang, PR China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, PR China
| | - Wenjing Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, 450001, Zhengzhou, Henan Province, PR China.
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, PR China.
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5, Ottawa, Canada
| | - Liang-Liang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, PR China.
| |
Collapse
|
9
|
Abstract
The Pd-catalyzed carbon-carbon bond formation pioneered by Heck in 1969 has dominated medicinal chemistry development for the ensuing fifty years. As the demand for more complex three-dimensional active pharmaceuticals continues to increase, preparative enzyme-mediated assembly, by virtue of its exquisite selectivity and sustainable nature, is poised to provide a practical and affordable alternative for accessing such compounds. In this minireview, we summarize recent state-of-the-art developments in practical enzyme-mediated assembly of carbocycles. When appropriate, background information on the enzymatic transformation is provided and challenges and/or limitations are also highlighted.
Collapse
Affiliation(s)
- Weijin Wang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Douglass F Taber
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Hans Renata
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
10
|
Kumar Palli K, Reddy Anugu R, Chandrasekhar S. Total Synthesis of (−)‐4‐
epi
‐Englerin A. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kishore Kumar Palli
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Raghunath Reddy Anugu
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
11
|
Abstract
An efficient and convergent first total syntheses of (±)-japonicol B and (-)-japonicol C have been completed. The notable points of the synthetic route are Lewis-acid-catalyzed Friedel-Crafts reaction for one pot C-C and C-O bond formations resulting in construction of the tricyclic meroterpenoid skeleton, one pot Pd(OH)2/C-catalyzed isomerization/hydrogenation, and site selective sp3 C-H oxidation.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208016, India
| | - Appasaheb K Nirpal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208016, India
| |
Collapse
|
12
|
Mou SB, Xiao W, Wang HQ, Chen KY, Xiang Z. Syntheses of the Carotane-type Terpenoids (+)-Schisanwilsonene A and (+)-Tormesol via a Two-Stage Approach. Org Lett 2020; 23:400-404. [DOI: 10.1021/acs.orglett.0c03894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shu-Bin Mou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wen Xiao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hua-Qi Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Kai-Yue Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zheng Xiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|