1
|
Kondoh A, Suzuki H, Hirozane T, Terada M. Catalytic Generation of Benzyl Anions from Aryl Ketones Utilizing [1,2]-Phospha-Brook Rearrangement and Their Application to Synthesis of Tertiary Benzylic Alcohols. Chemistry 2024; 30:e202402967. [PMID: 39215614 DOI: 10.1002/chem.202402967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
A synthetic method of tertiary alcohols was developed based on the formal umpolung addition of aryl ketones with electrophiles utilizing the [1,2]-phospha-Brook rearrangement under Brønsted base catalysis. The addition reaction of α-hydroxyphosphonates, derived from alkyl aryl- and diaryl ketones, with electrophiles such as phenyl vinyl sulfone, afforded phosphates having a tertiary alkyl group, which were readily convertible to the corresponding tertiary benzylic alcohols. This operationally simple protocol provides efficient complementary access to tertiary alcohols that are difficult to synthesize by conventional methods.
Collapse
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hirochika Suzuki
- Department of Chemistry, Graduate, School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Takayuki Hirozane
- Department of Chemistry, Graduate, School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate, School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
2
|
Gan L, Ye C, Pi T, Wang L, Li C, Liu L, Huang T, Chen T, Han LB. Ligand-Free Iron-Catalyzed Construction of C-P Bonds via Phosphorylation of Alcohols: Synthesis of Phosphine Oxides and Phosphine Compounds. J Org Chem 2024; 89:7047-7057. [PMID: 38669210 DOI: 10.1021/acs.joc.4c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
An efficient method for the construction of C-P(V) and C-P(III) bonds via the iron-catalyzed phosphorylation of alcohols under ligand-free conditions is disclosed. This strategy represents a straightforward process to prepare a series of phosphine oxides and phosphine compounds in good to excellent yields from the readily available alcohols and P-H compounds. A plausible mechanism is also proposed. We anticipate that this mode of transforming simple alcohols would apply in chemical synthesis widely.
Collapse
Affiliation(s)
- Liguang Gan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Changxu Ye
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianshu Pi
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Lingling Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Chunya Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Li-Biao Han
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
- Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
- Zhejiang Yangfan New Materials Company, Ltd., Shangyu, Zhejiang 312369, China
| |
Collapse
|
3
|
Oeser P, Tobrman T. Organophosphates as Versatile Substrates in Organic Synthesis. Molecules 2024; 29:1593. [PMID: 38611872 PMCID: PMC11154425 DOI: 10.3390/molecules29071593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This review summarizes the applications of organophosphates in organic synthesis. After a brief introduction, it discusses cross-coupling reactions, including both transition-metal-catalyzed and transition-metal-free substitution reactions. Subsequently, oxidation and reduction reactions are described. In addition, this review highlights the applications of organophosphates in the synthesis of natural compounds, demonstrating their versatility and importance in modern synthetic chemistry.
Collapse
Affiliation(s)
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic;
| |
Collapse
|
4
|
Dai Z, Xu C, Tian R, Duan Z. Towards tetrasubstituted furans through rearrangement and cyclodimerization of acetylenic ketones. Org Biomol Chem 2024; 22:1172-1175. [PMID: 38230589 DOI: 10.1039/d3ob02036c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Cyclodimerization of readily accessible acetylenic ketones facilitated by a phosphane-borane complex under basic conditions is achieved. This methodology allows one-pot synthesis of phosphorus-involved tetrasubstituted furans via the construction of a C-P bond and a furan ring within a single procedure. A plausible reaction mechanism is proposed.
Collapse
Affiliation(s)
- Zhenyun Dai
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001 Henan, China.
| | - Chenyong Xu
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001 Henan, China.
| | - Rongqiang Tian
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001 Henan, China.
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou, 450001 Henan, China.
| |
Collapse
|
5
|
Huang Y, Wang N, Wu ZG, Wu X, Wang M, Huang W, Zi Y. Sequential In Situ-Formed Kukhtin-Ramirez Adduct and P(NMe 2) 3-Catalyzed O-Phosphination of α-Dicarbonyls with P(O)-H. Org Lett 2023; 25:7595-7600. [PMID: 37830918 DOI: 10.1021/acs.orglett.3c02563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
O-Phosphination of α-dicarbonyls via sequential in situ formation of a Kukhtin-Ramirez adduct and a P(NMe2)3-catalyzed process has been exploited for the synthesis of α-phosphoryloxy carbonyls. A range of P(O)-H derivatives, including diarylphosphine oxides, arylphosphinates, and phosphinates, are competent candidates to be introduced into the α-dicarbonyls in this transformation, and various α-phosphoryloxy carbonyls are obtained. This approach possesses advantages of mild conditions, simple operations, atom economy, high efficiency, and gram-scale synthesis, which make it promising in the synthesis toolbox.
Collapse
Affiliation(s)
- Yuanyuan Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Nan Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Zheng-Guang Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Xinxing Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| |
Collapse
|
6
|
Lin Q, Wang S, Weng R, Cao W, Feng X. Chiral Lewis Acid-Catalyzed Asymmetric Multicomponent Michael Reaction through [1,2]-Phospha-Brook Rearrangement. Org Lett 2023; 25:6262-6266. [PMID: 37603544 DOI: 10.1021/acs.orglett.3c02042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The multicomponent catalytic asymmetric Pudovik addition/[1,2]-phospha-Brook rearrangement/Michael reaction sequence of isatins, phosphites, and 4-oxobutenoates was realized. A series of oxindole derivatives containing two contiguous stereocenters was obtained in high yields and excellent stereoselectivities (up to >99% yield, >95:5 dr, >99% ee) using a chiral Lewis acid catalyst. A possible catalytic model is presented to illustrate the stereocontrol.
Collapse
Affiliation(s)
- Qianchi Lin
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Siyuan Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Rui Weng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Recyclable gold(I)-catalyzed oxidative cyclization of 1,4-diyn-3-ols leading to highly substituted 3-formylfurans. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Kondoh A, Terada M. Synthesis of 2,2‐Disubstituted 2
H
‐Chromenes through Carbon‐Carbon Bond Formation Utilizing a [1,2]‐Phospha‐Brook Rearrangement under Brønsted Base Catalysis. Chemistry 2022; 28:e202201198. [DOI: 10.1002/chem.202201198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masahiro Terada
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
9
|
Kondoh A, Hirozane T, Terada M. Formal Umpolung Addition of Phosphites to 2‐Azaaryl Ketones under Chiral Brønsted Base Catalysis: Enantioselective Protonation Utilizing [1,2]‐Phospha‐Brook Rearrangement. Chemistry 2022; 28:e202201240. [DOI: 10.1002/chem.202201240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Takayuki Hirozane
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masahiro Terada
- Department of Chemistry Graduate School of Science Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
10
|
Lin Q, Zheng S, Chen L, Wu J, Li J, Liu P, Dong S, Liu X, Peng Q, Feng X. Catalytic Regio‐ and Enantioselective Protonation for the Synthesis of Chiral Allenes: Synergistic Effect of the Counterion and Water. Angew Chem Int Ed Engl 2022; 61:e202203650. [DOI: 10.1002/anie.202203650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Qianchi Lin
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Sujuan Zheng
- State Key Laboratory of Elemento-Organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China
| | - Long Chen
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Jin Wu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Jinzhao Li
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Peizhi Liu
- State Key Laboratory of Elemento-Organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
11
|
Lin Q, Zheng S, Chen L, Wu J, Li J, Liu P, Dong S, Liu X, Peng Q, Feng X. Catalytic Regio‐ and Enantioselective Protonation for the Synthesis of Chiral Allenes: Synergistic Effect of the Counterion and Water. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qianchi Lin
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Sujuan Zheng
- State Key Laboratory of Elemento-Organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China
| | - Long Chen
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Jin Wu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Jinzhao Li
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Peizhi Liu
- State Key Laboratory of Elemento-Organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry Tianjin Key Laboratory of Biosensing and Molecular Recognition and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology Ministry of Education College of Chemistry Sichuan University Chengdu 610064 China
| |
Collapse
|
12
|
Kondoh A, Terada M. Brønsted base-catalyzed 1,2-addition/[1,2]-phospha-Brook rearrangement sequence providing functionalized phosphonates. Org Biomol Chem 2022; 20:2863-2866. [PMID: 35302579 DOI: 10.1039/d2ob00256f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new methodology for the introduction of functional groups into an organic molecule in which a keto or a formyl group is used as the connecting site was developed by utilizing the 1,2-addition/[1,2]-phospha-Brook rearrangement sequence under Brønsted base catalysis. The reaction of aromatic aldehydes and ketones with phosphinates having functional groups such as alkynyl, bromoalkyl, N-Boc amino, and boryl groups efficiently proceeded with the aid of phosphazene base P2-tBu as the catalyst, providing densely functionalized phosphonates in good yields.
Collapse
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
13
|
Ali A, Jajoria R, Harit HK, Singh RP. Diastereoselective 1,6-Addition of α-Phosphonyloxy Enolates to para-Quinone Methides. J Org Chem 2022; 87:5213-5228. [PMID: 35378040 DOI: 10.1021/acs.joc.2c00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The addition of α-ketoamide to p-quinone methide initiated by dialkylphosphite in the presence of organic base 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) is explored. Coupling of dialkylphosphites to α-ketoamides in the presence of a base follows [1,2]-phospha-Brook rearrangement, generating corresponding α-phosphonyloxy enolates that are subsequently seized by p-quinone methides (p-QMs). The two-step one-pot 1,6-conjugate addition provides effective access to a series of isatin-incorporated phosphate-bearing 1,6-adducts having two vicinal tertiary carbons with up to 90% yield and >20:1 dr.
Collapse
Affiliation(s)
- Amjad Ali
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Raveena Jajoria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Harish K Harit
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
14
|
Ren L, Luo J, Tan L, Tang Q. Titanium-Mediated Domino Cross-Coupling/Cyclodehydration and Aldol-Addition/Cyclocondensation: Concise and Regioselective Synthesis of Polysubstituted and Fused Furans. J Org Chem 2022; 87:3167-3176. [PMID: 35133828 DOI: 10.1021/acs.joc.1c02894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Titanium enolates, in situ-generated from readily available ketones and titanium tetraisopropoxide, undergo domino cross-coupling/cyclodehydration or domino Aldol-addition/cyclocondensation with α-chloroketones to provide synthetically valuable furan derivatives. The domino process tolerates a variety of cyclic and acyclic ketones and chloroketones, producing polysubstituted furans and bi-, tri-, and tetracyclic fused furans.
Collapse
Affiliation(s)
- Lu Ren
- College of Pharmacy, Center for Lab Teaching and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Chongqing 400016, PR China
| | - Juan Luo
- College of Pharmacy, Center for Lab Teaching and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Chongqing 400016, PR China
| | - Linbo Tan
- College of Pharmacy, Center for Lab Teaching and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Chongqing 400016, PR China
| | - Qiang Tang
- College of Pharmacy, Center for Lab Teaching and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Chongqing 400016, PR China
| |
Collapse
|
15
|
Meng S, Wang Y, Liu J, Zheng J, Qian X, Wang Q. Tandem Cross-Coupling of Alkynyl Sulfides and Alkynyl Sulfoxides/[3,3]-Sulfonium Rearrangement to Construct Tetrasubstituted Furans. Org Lett 2022; 24:757-761. [PMID: 34994198 DOI: 10.1021/acs.orglett.1c04242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the presence of boron trifluoride, a variety of alkynyl sulfides and alkynyl sulfoxides undergo tandem cross-coupling/[3,3]-sulfonium rearrangement followed by 5-exo-dig heterocyclization. The strategy provides concise access to novel tetrasubstituted furans in good to high yields with 100% atom-economy efficiency. Further derivatization of the resultant furans was feasible by utilizing the incorporated alkylthio groups.
Collapse
Affiliation(s)
- Shuyu Meng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yinglan Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Jie Liu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Jie Zheng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xiao Qian
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Quanrui Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
16
|
Xue F, Chen X, He Z. Diethyl phosphite mediated reductive [1 + 4] annulation of α-ketoesters with α, β-unsaturated ketones and synthesis of polysubstituted 2,3-dihydrofurans. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Hrizi A, Thiery E, Romdhani‐Younes M, Jacquemin J, Thibonnet J. Efficient Synthesis of Polysubstituted Furans through a Base‐Promoted Oxacyclization of (
Z
)‐2‐En‐4‐yn‐1‐ols. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Asma Hrizi
- University of Tours Department of Chemistry Laboratoire de Synthèse et Isolement de Molécules BioActives EA 7502 Faculté des Sciences et Techniques de Tours Parc de Grandmont 37200 Tours France
- University of Carthage Department of Chemistry, Faculté de Bizerte 7021 Zarzouna, Bizerte Tunisie
- Université de Tunis El Manar Faculté des Sciences de Tunis Département de chimie Laboratoire de Chimie (Bio)Organique Structurale et de Polymères (LR99ES14) Campus Universitaire 2092 El Manar Tunisia
| | - Emilie Thiery
- University of Tours Department of Chemistry Laboratoire de Synthèse et Isolement de Molécules BioActives EA 7502 Faculté des Sciences et Techniques de Tours Parc de Grandmont 37200 Tours France
| | - Moufida Romdhani‐Younes
- University of Carthage Department of Chemistry, Faculté de Bizerte 7021 Zarzouna, Bizerte Tunisie
- Université de Tunis El Manar Faculté des Sciences de Tunis Département de chimie Laboratoire de Chimie (Bio)Organique Structurale et de Polymères (LR99ES14) Campus Universitaire 2092 El Manar Tunisia
| | - Johan Jacquemin
- University of Tours Department of Chemistry Laboratoire PCM2E EA 6299 Faculté des Sciences et Techniques de Tours Parc de Grandmont 37200 Tours France
- Mohammed VI Polytechnic University Materials Science and Nano-Engineering Lot 660-Hay Moulay Rachid 43150 Ben Guerir Morocco
| | - Jérôme Thibonnet
- University of Tours Department of Chemistry Laboratoire de Synthèse et Isolement de Molécules BioActives EA 7502 Faculté des Sciences et Techniques de Tours Parc de Grandmont 37200 Tours France
| |
Collapse
|
18
|
Chen Q, Teng Y, Xu F. Lanthanide Silylamide-Catalyzed Synthesis of Pyrano[2,3- b]indol-2-ones. Org Lett 2021; 23:4785-4790. [PMID: 34048269 DOI: 10.1021/acs.orglett.1c01506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A lanthanide silylamide-catalyzed tandem reaction of isatins, diethyl phosphite, and 2,3-diarylcyclopropenones has been developed. A series of pyrano[2,3-b]indol-2-ones were synthesized in high yields. The cooperation of the Lewis acidity of the lanthanide center and the Bronsted basicity of the N(SiMe3)2 anion may be the key factor affecting the catalytic activity of lanthanide amides.
Collapse
Affiliation(s)
- Qifa Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yue Teng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Fan Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
19
|
Almássy A, Hejtmánková A, Vargová D, Šebesta R. Isomerization of Ferrocenyl Phosphinites to Phosphane-oxides and retro-Phospha-Brook Rearrangement. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Chen VY, Kwon O. Unified Approach to Furan Natural Products via Phosphine-Palladium Catalysis. Angew Chem Int Ed Engl 2021; 60:8874-8881. [PMID: 33533120 PMCID: PMC8016739 DOI: 10.1002/anie.202015232] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/12/2021] [Indexed: 01/14/2023]
Abstract
Polyalkyl furans are widespread in nature, often performing important biological roles. Despite a plethora of methods for the synthesis of tetrasubstituted furans, the construction of tetraalkyl furans remains non-trivial. The prevalence of alkyl groups in bioactive furan natural products, combined with the desirable bioactivities of tetraalkyl furans, calls for a general synthetic protocol for polyalkyl furans. This paper describes a Michael-Heck approach, using sequential phosphine-palladium catalysis, for the preparation of various polyalkyl furans from readily available precursors. The versatility of this method is illustrated by the total syntheses of nine distinct polyalkylated furan natural products belonging to different classes, namely the furanoterpenes rosefuran, sesquirosefuran, and mikanifuran; the marine natural products plakorsins A, B, and D and plakorsin D methyl ester; and the furan fatty acids 3D5 and hydromumiamicin.
Collapse
Affiliation(s)
- Violet Yijang Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1659 (USA)
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1659 (USA)
| |
Collapse
|
21
|
Chen VY, Kwon O. Unified Approach to Furan Natural Products via Phosphine‐Palladium Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Violet Yijang Chen
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095-1659 USA
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095-1659 USA
| |
Collapse
|
22
|
Affiliation(s)
- Jiarong Shi
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Lianggui Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Yang Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| |
Collapse
|
23
|
Kondoh A, Terada M. Development of Molecular Transformations on the Basis of Catalytic Generation of Anionic Species by Organosuperbase. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
24
|
Kondoh A, Terada M. Brønsted Base-Catalyzed Formal Reductive [3+2] Annulation of 4,4,4-Trifluorocrotonate and α-Iminoketones. Chemistry 2021; 27:585-588. [PMID: 32869872 DOI: 10.1002/chem.202002943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/27/2020] [Indexed: 02/01/2023]
Abstract
A formal reductive [3+2] annulation of 4,4,4-trifluorocrotonate and α-iminoketones was developed under Brønsted base catalysis. A single phosphazene base efficiently catalyzes the one-pot tandem reaction involving two mechanistically different elementary processes, namely the chemoselective reduction of an imine moiety of α-iminoketones with thiols as the reductant and the subsequent intermolecular Michael addition of an enolate of α-aminoketones concomitant with lactam formation. This operationally simple method provides β-trifluoromethyl-substituted γ-lactams with a tetrasubstituted carbon as a single diastereomer.
Collapse
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
25
|
Han C, Tian X, Song L, Liu Y, Hashmi ASK. Tetra-substituted furans by a gold-catalysed tandem C(sp 3)–H alkynylation/oxy-alkynylation reaction. Org Chem Front 2021. [DOI: 10.1039/d1qo01401c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A gold-catalysed cascade C(sp3)–H alkynylation/oxy-alkynylation of acceptor-substituted carbonyl compounds with hypervalent iodine(iii) reagents for the synthesis of tetra-substituted furans, offering distinct advantages over previous methods.
Collapse
Affiliation(s)
- Chunyu Han
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Xianhai Tian
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Lina Song
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Yaowen Liu
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A. Stephen K. Hashmi
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
26
|
DBU Catalyzed Phospho-Aldol-Brook Rearrangement for Rapid Preparation of α-Phosphates Amide in Solvent-Free Conditions. Catalysts 2020. [DOI: 10.3390/catal10121445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The 1,8-diazabicyclo [5.4.0] undec-7-ene DBU-catalyzed Phospho-Aldol-Brook Rearrangement reaction of α-ketoamide and dialkyl phosphites was developed under solvent-free at room temperature. The novel α-Phosphate Amide derivatives could be obtained with good yield (86–96%), which also exhibited good tolerance of various dialkyl phosphites and α-ketoamide, including isatins. In addition, the reaction was conducted in both gram-scale and mol-scale, and the title compounds could also be obtained in excellent yield (more than 91%) within 5 min.
Collapse
|
27
|
Jin H, Fürstner A. Modular Synthesis of Furans with up to Four Different Substituents by a trans-Carboboration Strategy. Angew Chem Int Ed Engl 2020; 59:13618-13622. [PMID: 32374441 PMCID: PMC7496670 DOI: 10.1002/anie.202005560] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 01/18/2023]
Abstract
Propargyl alcohols, on treatment with MHMDS (M=Na, K), B2 (pin)2 , an acid chloride and a palladium/copper co-catalyst system, undergo a reaction cascade comprised of trans-diboration, regioselective acylation, cyclization and dehydration to give trisubstituted furylboronic acid pinacol ester derivatives in good yields; subsequent Suzuki coupling allows a fourth substituent of choice to be introduced and hence tetrasubstituted (arylated) furans to be formed. In terms of modularity, the method seems unrivaled, not least because each product can be attained by two orthogonal but convergent ways ("diagonal split"). This asset is illustrated by the "serial" formation of a "library" of all twelve possible furan isomers that result from systematic permutation of four different substituents about the heterocyclic core.
Collapse
Affiliation(s)
- Hongming Jin
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
28
|
Jin H, Fürstner A. Modular Synthesis of Furans with up to Four Different Substituents by a
trans
‐Carboboration Strategy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hongming Jin
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim/Ruhr Germany
| |
Collapse
|