1
|
Li D, Wu J, Yang L, Cai S, Tang Y, Li Y, Xu S. DMAP-Catalyzed [4 + 2] Annulation of Hex-5-en-2-ynoates with Electron-Poor Alkenes. Org Lett 2024. [PMID: 39707150 DOI: 10.1021/acs.orglett.4c03842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Herein, we report a DMAP-catalyzed [4 + 2] annulation reaction of hex-5-en-2-ynoates 1 with electron-poor alkenes 2, which affords exocyclic olefinic cyclohexenes 3 in good yields and excellent regio-, diastereo-, and E/Z selectivities. Distinguished from previous allenoate- or alkynoate-based substrates, hex-5-en-2-ynoates 1 use the β- and ε-carbons for the bond formation, presenting new and regiodivergent C4 synthons for Lewis base-catalyzed annulations.
Collapse
Affiliation(s)
- Dongqiu Li
- School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Northwest Rubber & Plastics Research & Design Institute Co., Ltd., Xianyang 712023, China
| | - Jiale Wu
- School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - LuLu Yang
- School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shuangshuang Cai
- School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuhai Tang
- School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Silong Xu
- School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
2
|
Hao L, Zhu F, Liu X, Wang D. Spirophosphine-Catalyzed Enantioselective [3 + 2] Cycloaddition of Allenoates and Unsaturated α-Ketimine Esters. Org Lett 2024; 26:8860-8865. [PMID: 39373463 DOI: 10.1021/acs.orglett.4c03307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
A novel chiral spiro-monophosphine, OUC-Phos, was synthesized and utilized for the first time in the asymmetric Lu's [3 + 2] cycloaddition reaction of β,γ-unsaturated α-ketimine ester with allenoate. OUC-Phos, featuring a 3,3'-diphenyl-modified spirobiindane skeleton, demonstrated exceptional catalytic efficiency in the [3 + 2] cycloaddition to achieve high yields, enantioselectivities, and diastereoselectivities for the targeted products. The broad substrate scope encompassing diverse functional groups demonstrated the versatility of this methodology. Furthermore, the reaction was successfully scaled up, and the products were easily converted into their corresponding functionalized derivatives.
Collapse
Affiliation(s)
- Luyao Hao
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Fangfang Zhu
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - Xinyu Liu
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
| | - De Wang
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Biomedical Research Institute of Qingdao, Ocean University of China, Qingdao 266071, China
| |
Collapse
|
3
|
Zhou Y, Jiang Q, Cheng Y, Hu M, Duan XH, Liu L. Photoredox-Catalyzed Acylchlorination of α-CF 3 Alkenes with Acyl Chloride and Application as Masked Access to β-CF 3-enones. Org Lett 2024; 26:2656-2661. [PMID: 38526445 DOI: 10.1021/acs.orglett.4c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
We disclose a photocatalytic strategy that simultaneously addresses the construction of trifluoromethylated quaternary carbon centers and the preparation of β-CF3-enones through radical difunctionalization of α-CF3 alkenes with acyl chlorides. This method is characterized by its broad functional group compatibility, high efficiency, and atom economy. The versatility of this transformation is poised to broaden the applications of α-CF3 alkenes, providing new pathways for the rapid assembly of structurally diverse fluorinated compounds.
Collapse
Affiliation(s)
- Youkang Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qi Jiang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yangyang Cheng
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, China
| | - Mingyou Hu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
4
|
Guo W, Hori M, Ogura Y, Nishimura K, Oki K, Ikai T, Yashima E, Ishihara K. Tandem Isomerization/α,β-Site-Selective and Enantioselective Addition Reactions of N-(3-Butynoyl)-3,5-dimethylpyrazole Induced by Chiral π-Cu(II) Catalysts. J Am Chem Soc 2023; 145:27080-27088. [PMID: 38032102 PMCID: PMC10722507 DOI: 10.1021/jacs.3c10820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023]
Abstract
Allenes are important building blocks, and derivatization of products via cycloadditions of allenes could become a powerful strategy for constructing carbocyclic and heterocyclic rings. However, the development of catalytic site-selective and enantioselective cycloaddition reactions of allenes still presents significant challenges. Here, we report chiral π-Cu(II)-complex-catalyzed isomerization of N-(3-butynoyl)-3,5-dimethyl-1H-pyrazole to generate N-allenoylpyrazole in situ and subsequent α,β-site-selective and enantioselective [3 + 2], [4 + 2], or [2 + 2] cycloaddition or conjugate addition reactions. The asymmetric environment created by the intramolecular π-Cu(II) interactions provides the corresponding adducts in moderate to high yield with excellent enantioselectivity. To the best of our knowledge, this is the first successful method for chiral-Lewis-acid-catalyzed tandem isomerization/α,β-site-selective and enantioselective cycloaddition or conjugate addition reactions of latent non-γ-substituted allenoyl derivative.
Collapse
Affiliation(s)
- Weiwei Guo
- Graduate
School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Masahiro Hori
- Graduate
School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Yoshihiro Ogura
- Graduate
School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Kazuki Nishimura
- Graduate
School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Kosuke Oki
- Graduate
School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Tomoyuki Ikai
- Graduate
School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Eiji Yashima
- Graduate
School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate
School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
5
|
Zhao JQ, Zhang XM, He YY, Peng QQ, Rao HW, Zhang YP, Wang ZH, You Y, Yuan WC. Catalytic Asymmetric Synthesis of Vicinally Bis(trifluoromethyl)-Substituted Molecules via Normal [3 + 2] Cycloaddition of N-2,2,2-Trifluoroethyl Benzothiophene Ketimines and β-Trifluoromethyl Enones. Org Lett 2023; 25:8027-8032. [PMID: 37916762 DOI: 10.1021/acs.orglett.3c03252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
An organocatalytic asymmetric [3 + 2] cycloaddition of β-trifluoromethyl enones with 3-(N-2,2,2-trifluoroethyl) benzothiophene ketimines and 2-(N-2,2,2-trifluoroethyl) benzothiophene ketimines was described for the first time. A wide spectrum of vicinally bis(trifluoromethyl)-substituted spiro pyrrolidine-benzothiophenones were obtained with excellent stereocontrol (all cases >20:1 dr and up to 99% ee). The highlight of this work is the extremely high efficiency in the construction of spirocyclic benzothiophenone derivatives possessing a vicinally bis(trifluoromethyl)-substituted pyrrolidine moiety with four contiguous stereocenters.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Xue-Man Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Yu-Ying He
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Qiao-Qiao Peng
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Han-Wen Rao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| |
Collapse
|
6
|
Miguélez R, Barrio P, González JM. Recent Advances in the Catalytic Synthesis of the Cyclopentene Core. CHEM REC 2023:e202300254. [PMID: 37821421 DOI: 10.1002/tcr.202300254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Five-membered carbocycles are ubiquitously found in natural products, pharmaceuticals, and other classes of organic compounds. Within this category, cyclopentenes deserve special attention due to their prevalence as targets and as well as key intermediates for synthesizing more complex molecules. Herein, we offer an overview summarizing some significant recent advances in the catalytic assembly of this structural motif. A great variety of synthetic methodologies and strategies are covered, including transition metal-catalyzed or organocatalyzed processes. Both inter- and intramolecular transformations are documented. On this ground, our expertise in the application of C-H functionalization reactions oriented towards the formation of this ring and its subsequent selective functionalization is embedded.
Collapse
Affiliation(s)
- Rubén Miguélez
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Pablo Barrio
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - José M González
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
7
|
Light-induced phosphine-catalyzed asymmetric functionalization of benzylic C-H bonds. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Li F, Xu Y, Wang C, Wang C, Xie H, Xu Y, Chen P, Wang L. Efficient Synthesis of Substituted Pyrazoles Via [3+2] Cycloaddition Catalyzed By Lipase in Ionic Liquid. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
9
|
Xiang Alvin Tan C, Li R, Zhang F, Dai L, Ullah N, Lu Y. Synthesis of Axially Chiral CF
3
‐Substituted 2‐Arylpyrroles by Sequential Phosphine‐Catalyzed Asymmetric [3+2] Annulation and Oxidative Central‐to‐Axial Chirality Transfer. Angew Chem Int Ed Engl 2022; 61:e202209494. [DOI: 10.1002/anie.202209494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Chuan Xiang Alvin Tan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Integrative Sciences & Engineering Programme (ISEP) National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| | - Rui Li
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou Fujian 350207 China
| | - Fuhao Zhang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Lei Dai
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Nisar Ullah
- Chemistry Department King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Yixin Lu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Integrative Sciences & Engineering Programme (ISEP) National University of Singapore 28 Medical Drive Singapore 117456 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou Fujian 350207 China
| |
Collapse
|
10
|
Xu J, Hu Y, Liao J, Du J, Wang L, Wang W, Wu Y, Guo H. Synthesis of Fluoroalkyl Cyclopentenes: Highly Diastereoselective Phosphine‐Catalyzed [3+2] Annulation of β‐Fluoroalkylvinyl Arylsulfones with Morita‐Baylis‐Hillman Carbonates. ChemistrySelect 2022. [DOI: 10.1002/slct.202203184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jiaqing Xu
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Yimin Hu
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Jianning Liao
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | - Juan Du
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| | | | - Wei Wang
- College of Public Health Zhengzhou University Zhengzhou 450001 China
| | - Yongjun Wu
- College of Public Health Zhengzhou University Zhengzhou 450001 China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research China Agricultural University 2 West Yuanmingyuan Road Beijing 100193 P. R. China
| |
Collapse
|
11
|
Li D, Cheng F, Tang Y, Li J, Li Y, Jiao J, Xu S. DABCO-Catalyzed [4 + 2] Annulation of 5-Methylenehex-2-ynedioates with Electron-Deficient Alkenes. J Org Chem 2022; 87:6362-6370. [DOI: 10.1021/acs.joc.1c03159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dongqiu Li
- School of Chemistry, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Fang Cheng
- School of Chemistry, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Yuhai Tang
- School of Chemistry, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Jing Li
- School of Chemistry, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Yang Li
- School of Chemistry, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Jiao Jiao
- School of Chemistry, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Silong Xu
- School of Chemistry, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| |
Collapse
|
12
|
Yang Y, Shang H, Li X, Zhu K, Luan Y. The synthesis of a copper metal‐organic framework Cu
3
TDPAT and its application in a Morita‐Baylis‐Hillman (MBH) reaction. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanan Yang
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Hailing Shang
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Xiujuan Li
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| | - Kaicheng Zhu
- Xi'an Key Laboratory of Advanced Photo‐electronics Materials and Energy Conversion Device, School of Sciences Xijing University Xi'an China
| | - Yi Luan
- School of Materials Science and Engineering University of Science and Technology Beijing Beijing China
| |
Collapse
|
13
|
Wu M, Han Z, Ni H, Wang N, Ding K, Lu Y. Phosphine-catalyzed Divergent Domino Processes between γ-Substituted Allenoates and Carbonyl-Activated Alkenes. Chem Sci 2022; 13:3161-3168. [PMID: 35414887 PMCID: PMC8926293 DOI: 10.1039/d1sc06364b] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Highly enantioselective and chemodivergent domino reactions between γ-substituted allenoates and activated alkenes have been developed. In the presence of NUSIOC-Phos, triketone enone substrates smoothly reacted with γ-substituted allenoates to form bicyclic furofurans in good yields with high stereoselectivities. Alternatively, the reaction between diester-activated enone substrates and γ-substituted allenoates formed chiral conjugated 1,3-dienes in good yields with excellent enantioselectivities. Notably, by employing substrates with subtle structural difference, under virtually identical reaction conditions, we were able to access two types of chiral products, which are of biological relevance and synthetic importance. Highly enantioselective and chemodivergent domino reactions between γ-substituted allenoates and activated alkenes have been developed.![]()
Collapse
Affiliation(s)
- Mingyue Wu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Zhaobin Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Huanzhen Ni
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Nengzhong Wang
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yixin Lu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
14
|
Li Z, Gu Y, Xu D, Fei X, Zhang L. Density Functional Theory Study on the Mechanism of Organophosphine-Catalyzed [4+2] Cycloaddition Reaction. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Li D, Cheng F, Tang Y, Li J, Li Y, Jiao J, Xu S. Phosphine-Catalyzed Internal Redox [4 + 2] Annulation between 1,4-Enynoates and Electron-Deficient Alkenes. Org Lett 2021; 23:9030-9035. [PMID: 34807623 DOI: 10.1021/acs.orglett.1c03206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we describe a phosphine-catalyzed internal redox [4 + 2] annulation of 1,4-enynoates with electron-deficient alkenes, in which the γ- and φ-C(sp3)-H of the enynoates are formally oxidized for the annulation while the alkynyl moiety is converted to an alkene. The reaction offers an efficient synthesis of highly functionalized cyclohexenes in moderate to good yields with exclusive regioselectivity and high diastereoselectivity under mild conditions.
Collapse
Affiliation(s)
- Dongqiu Li
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Fang Cheng
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuhai Tang
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jing Li
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiao Jiao
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Silong Xu
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
16
|
Gao Y, Zhang J, Shan W, Fei W, Yao J, Yao W. Enantioselective Phosphine-Catalyzed Trimerization of γ-Aryl-3-butynoates via Isomerization/[3 + 2] Cyclization/Michael Addition Cascade. Org Lett 2021; 23:6377-6381. [PMID: 34346689 DOI: 10.1021/acs.orglett.1c02197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We disclose an l-isoleucine-derived amide phosphine-catalyzed trimerization of γ-aryl-3-butynoates, which undergo an isomerization to allenoate, [3 + 2] cyclization, and Michael addition cascade. Exocyclopentene derivatives bearing an all-carbon quaternary stereocenter were constructed stereospecifically and enantioselectively. A wide variety of γ-aryl-3-butynoates could be employed to deliver optically pure cyclopentene derivatives in moderate to good yields with ee values of ≥95% and in most cases ≥98%.
Collapse
Affiliation(s)
- Yujia Gao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Juan Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Wenyu Shan
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Weihong Fei
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Jinzhong Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Weijun Yao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
17
|
Sharma A, Nagaraju K, Rao GA, Gurubrahamam R, Chen K. Asymmetric Organocatalysis of Activated Alkynes and Enynes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Akashdeep Sharma
- Department of Chemistry Indian Institute of Technology Jammu Jagati Jammu (J&K) 181221 India
| | - Koppanathi Nagaraju
- Department of Chemistry National Taiwan Normal University Taipei 11677 Taiwan
| | - Gunda Ananda Rao
- Department of Chemistry National Taiwan Normal University Taipei 11677 Taiwan
| | - Ramani Gurubrahamam
- Department of Chemistry Indian Institute of Technology Jammu Jagati Jammu (J&K) 181221 India
| | - Kwunmin Chen
- Department of Chemistry National Taiwan Normal University Taipei 11677 Taiwan
| |
Collapse
|
18
|
Xie C, Smaligo AJ, Song XR, Kwon O. Phosphorus-Based Catalysis. ACS CENTRAL SCIENCE 2021; 7:536-558. [PMID: 34056085 PMCID: PMC8155461 DOI: 10.1021/acscentsci.0c01493] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 05/08/2023]
Abstract
Phosphorus-based organocatalysis encompasses several subfields that have undergone rapid growth in recent years. This Outlook gives an overview of its various aspects. In particular, we highlight key advances in three topics: nucleophilic phosphine catalysis, organophosphorus catalysis to bypass phosphine oxide waste, and organophosphorus compound-mediated single electron transfer processes. We briefly summarize five additional topics: chiral phosphoric acid catalysis, phosphine oxide Lewis base catalysis, iminophosphorane super base catalysis, phosphonium salt phase transfer catalysis, and frustrated Lewis pair catalysis. Although it is not catalytic in nature, we also discuss novel discoveries that are emerging in phosphorus(V) ligand coupling. We conclude with some ideas about the future of organophosphorus catalysis.
Collapse
Affiliation(s)
- Changmin Xie
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Andrew J. Smaligo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | | | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
19
|
Tian YT, Zhang FG, Ma JA. Regioselective [3 + 2] Cycloaddition Reaction of 3-Alkynoates with Seyferth-Gilbert Reagent. J Org Chem 2021; 86:3574-3582. [PMID: 33507737 DOI: 10.1021/acs.joc.0c02957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A Et3N-triggered regioselective [3 + 2] cycloaddition reaction of 3-alkynoates with Seyferth-Gilbert reagent has been developed to furnish a series of trisubstituted pyrazole-3-phosphonates. A one-pot cycloaddition/alkylation sequence further offered access to the corresponding fully substituted pyrazoles.
Collapse
Affiliation(s)
- Yu-Ting Tian
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People's Republic of China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People's Republic of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People's Republic of China
| |
Collapse
|
20
|
Tian YT, Zhang FG, Ma JA. Et3N-catalyzed direct cycloaddition reaction of allenoates with acceptor diazo compounds. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
McDaniel J, Farley CA, Ramirez A, Sandhu B, Sarjeant A, Shi Q, Han A, Gallagher WP, Hynes J, Dhar TGM, Gonzalez-Bobes F, Coombs JR, Marcoux D. Discovery of Annulating Reagents Enabling the One-Step and Highly Stereoselective Synthesis of Cyclopentyl and Cyclohexyl Cores. Org Lett 2021; 23:60-65. [PMID: 33351641 DOI: 10.1021/acs.orglett.0c03695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of the unprecedented annulating reagents methyl N-(tert-butylsulfinyl)-4-chlorobutanimidate and methyl N-(tert-butylsulfinyl)-5-bromopentanimidate enables the diastereoselective preparation of 5- and 6-membered carbocycles bearing three contiguous stereocenters. These synthons undergo cycloaddition with a variety of Michael acceptors to form cyclopentane/cyclohexane rings with excellent stereochemical control, generating only one of the eight possible diastereomers. This novel methodology has enabled the highly enantioselective and high yielding synthesis of novel chemotypes of pharmacological relevance.
Collapse
Affiliation(s)
- Jade McDaniel
- Department of Discovery Chemistry, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Christopher A Farley
- Department of Discovery Chemistry, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Antonio Ramirez
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Bhupinder Sandhu
- Material Science & Engineering, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Amy Sarjeant
- Material Science & Engineering, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Qing Shi
- Department of Discovery Chemistry, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Arthur Han
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - William P Gallagher
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - John Hynes
- Department of Discovery Chemistry, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - T G Murali Dhar
- Department of Discovery Chemistry, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| | - Francisco Gonzalez-Bobes
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - John R Coombs
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - David Marcoux
- Department of Discovery Chemistry, Bristol Myers Squibb, 3551 Lawrenceville Road, Princeton, New Jersey 08540, United States
| |
Collapse
|
22
|
Chaudhary B, Kulkarni N, Saiyed N, Chaurasia M, Desai S, Potkule S, Sharma S. β
‐Trifluoromethyl
α
,
β
‐unsaturated Ketones: Efficient Building Blocks for Diverse Trifluoromethylated Molecules. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bharatkumar Chaudhary
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| | - Neeraj Kulkarni
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| | - Nehanaz Saiyed
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| | - Meenakshi Chaurasia
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| | - Surbhi Desai
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| | - Sagar Potkule
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| | - Satyasheel Sharma
- Department of Natural Products National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER−A) Gandhinagar Gujarat 382355 INDIA
| |
Collapse
|
23
|
Dai Z, Zhu J, Su W, Zeng W, Liu Z, Chen M, Zhou Q. Phosphine-Catalyzed Stereoselective Tandem Annulation Reaction for the Synthesis of Chromeno[4,3-b]pyrroles. Org Lett 2020; 22:7008-7012. [DOI: 10.1021/acs.orglett.0c02558] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zonghao Dai
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jin Zhu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wenbo Su
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wuxian Zeng
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ziqi Liu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ming Chen
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qingfa Zhou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|