1
|
Vyas H, Gangani AJ, Mini A, Pathil M, Ruth A, Sharma A. Strain-release enables access to carbonyl conjugated allylic diborons and alkenyl boronates having multiple contiguous stereocenters in a one-pot process. Chem Sci 2024:d4sc06514j. [PMID: 39669178 PMCID: PMC11633661 DOI: 10.1039/d4sc06514j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024] Open
Abstract
Allylic diboronates are highly valuable reagents in organic synthesis. Existing methods predominantly yield alkyl-substituted allylic diboronates, while the incorporation of electrophilic carbonyl groups conjugated to these allylic systems remains unknown. We present a strain-release promoted cycloaddition-based strategy that enabled access to unprecedented carbonyl conjugated secondary allylic diborons. This mild base-free method also facilitated a one-pot multicomponent cycloaddition-allylboration sequence for a highly diastereoselective installation of contiguous quaternary, tertiary and secondary carbon centers on a scaffold featuring valuable β-hydroxy ester, β-vinyl ester and vinyl boronate motifs. The synthetic utility of these densely functionalized products was demonstrated through their transformation into other rare and sterically congested alkenylborons such as borylated spiro-fused β-lactones and bicyclic γ-butyrolactones. Detailed 11B NMR, deuterium labeling and mass spectrometry studies provided insights on an unexpected base-free deboronative allylic shift reaction of conjugated allylic diboronates.
Collapse
Affiliation(s)
- Het Vyas
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology Hoboken NJ 07307 USA
| | - Ashvin J Gangani
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology Hoboken NJ 07307 USA
| | - Aiswarya Mini
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology Hoboken NJ 07307 USA
| | - Melissa Pathil
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology Hoboken NJ 07307 USA
| | - Austin Ruth
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology Hoboken NJ 07307 USA
| | - Abhishek Sharma
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology Hoboken NJ 07307 USA
| |
Collapse
|
2
|
Zhang Z, Chen M. Stereo- and Enantioselective Syntheses of 1,2-Oxaborinan-3-enes and δ-Boryl-Substituted Homoallylic Alcohols. Org Lett 2024; 26:10102-10107. [PMID: 39561401 PMCID: PMC11613688 DOI: 10.1021/acs.orglett.4c03755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Stereo- and enantioselective syntheses of 1,2-oxaborinan-3-enes and δ-boryl-substituted homoallylic alcohols are reported. We developed a practical approach to synthesize α-boryl-substituted allylboronate. This reagent was utilized to generate α,α-disubstituted allylboronates, and such reagents cannot be accessed via the Pd-catalyzed alkene isomerization approach. Chiral Brønsted-acid-catalyzed aldehyde addition with these reagents gave 1,2-oxaborinan-3-enes with excellent stereo- and enantioselectivities. Lewis-acid-catalyzed aldehyde addition also worked well, affording δ-boryl-substituted homoallylic alcohols with high stereoselectivities. The enantioselective variant of the reaction was achieved via a chiral Brønsted-acid-catalyzed aldehyde addition and Pd-catalyzed alkene isomerization approach.
Collapse
Affiliation(s)
- Zheye Zhang
- Department of Chemistry, Virginia
Tech, Blacksburg, Virginia 24061, United States
| | - Ming Chen
- Department of Chemistry, Virginia
Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Takayanagi H, Oku N, Yamazaki K, Miura T. Synthesis of α-Boryl-α-Substituted Allylboronates from Propyne. Org Lett 2024; 26:10108-10113. [PMID: 39537146 DOI: 10.1021/acs.orglett.4c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A novel method for the two-step synthesis of α-boryl-α-substituted allylboronates from propyne is described. These allylboronates are prepared by the Co-catalyzed 1,1-diboration reaction of propyne with B2pin2, followed by the base-mediated alkylation reaction of 1,1-di(boryl)propene at the α-position. Computational studies revealed the origins of observed reactivity and selectivity in the base-mediated alkylation reaction. The resulting α-boryl-α-methyl-allylboronate is applied to the allylation of aldehydes, which gives homoallylic alcohols with a trisubstituted alkene moiety.
Collapse
Affiliation(s)
- Hiro Takayanagi
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan
| | - Naoki Oku
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Ken Yamazaki
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan
| | - Tomoya Miura
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan
| |
Collapse
|
4
|
Jin Y, Lee J, Jo W, Yu J, Cho SH. Axially chiral α-boryl-homoallenyl boronic esters as versatile toolbox for accessing centrally and axially chiral molecules. Nat Commun 2024; 15:9239. [PMID: 39455568 PMCID: PMC11511823 DOI: 10.1038/s41467-024-53606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Axially chiral allenes bearing organoboron groups are highly sought-after building blocks in organic synthesis due to their potential for generating a wide range of axially and centrally chiral molecules. However, the existing methods for preparing axially chiral allenes containing boron group are primarily limited to the synthesis of allenyl boronic esters, and strategies for accessing axially chiral homoallenyl boronic esters are still scarce. Here, we report the general method for synthesizing axially chiral α-boryl-homoallenyl boronic esters through a highly regio- and stereoselective copper-mediated SN2'-addition of newly prepared (diborylalkyl)copper species to chiral propargyl electrophiles. The reaction conditions were optimized to achieve high yields and excellent stereospecificity. The obtained products were successfully transformed into various axially chiral allenes and other chiral molecules by transforming diboron units. The potential for axial-to-central chirality transfer of axially chiral α-boryl-homoallenyl boronic esters is also demonstrated through the stereospecific addition to aldehydes and N-H aldimines, yielding enantioenriched 1,2-oxaborinin-3,5-dienes and 2-aminomethyl-1,3-dienes.
Collapse
Affiliation(s)
- Yonghoon Jin
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junseok Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Woohyun Jo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeongwoo Yu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
5
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
6
|
Bastick KAC, Roberts DD, Watson AJB. The current utility and future potential of multiborylated alkanes. Nat Rev Chem 2024; 8:741-761. [PMID: 39327469 DOI: 10.1038/s41570-024-00650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Organoboron chemistry has become a cornerstone of modern synthetic methodology. Most of these reactions use an organoboron starting material that contains just one C(sp2)-B or C(sp3)-B bond; however, there has been a recent and accelerating trend to prepare multiborylated alkanes that possess two or more C(sp3)-B bonds. This is despite a lack of general reactivity, meaning many of these compounds currently offer limited downstream synthetic value. This Review summarizes recent advances in the exploration of multiborylated alkanes, including a discussion on how these products may be elaborated in further synthetic manipulations.
Collapse
Affiliation(s)
- Kane A C Bastick
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Dean D Roberts
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK.
| |
Collapse
|
7
|
Huang M, Sun H, Seufert F, Friedrich A, Marder TB, Hu J. Photoredox/Cu-Catalyzed Decarboxylative C(sp 3)-C(sp 3) Coupling to Access C(sp 3)-Rich gem-Diborylalkanes. Angew Chem Int Ed Engl 2024; 63:e202401782. [PMID: 38818649 DOI: 10.1002/anie.202401782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
gem-Diborylalkanes are highly valuable building blocks in organic synthesis and pharmaceutical chemistry due to their ability to participate in multi-step cross-coupling transformations, allowing for the rapid generation of molecular complexity. While progress has been made in their synthetic metholodology, the construction of β-tertiary and C(sp3)-rich gem-diborylalkanes remains a synthetic challenge due to substrate limitations and steric hindrance issues. An approach is presented that utilizes synergistic photoredox and copper catalysis to achieve efficient C(sp3)-C(sp3) cross-coupling of alkyl N-hydroxyphthalimide esters, which can easily be obtained from alkyl carboxylic acids, with diborylmethyl species, providing a series of C(sp3)-rich gem-diborylalkanes with 1°, 2°, and even 3° β positions. Furthermore, this approach can also be applied to complex medicinal compounds and natural products, offering rapid access to molecular complexity and late-stage functionalization of C(sp3)-rich drug candidates. Mechanistic experiments revealed that diborylmethyl Cu(I) species participated in both the photoredox process and the key C(sp3)-C(sp3) bond-forming step.
Collapse
Affiliation(s)
- Mingming Huang
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Huaxing Sun
- State Key Laboratory of Organic Electronics and Information Displays & & Institute of Advanced Materials (IAM), College of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Florian Seufert
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jiefeng Hu
- State Key Laboratory of Organic Electronics and Information Displays & & Institute of Advanced Materials (IAM), College of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
8
|
Ning PF, Wei Y, Chen XY, Yang YF, Gao FC, Hong K. A General Method to Access Sterically Encumbered Geminal Bis(boronates) via Formal Umpolung Transformation of Terminal Diboron Compounds. Angew Chem Int Ed Engl 2024; 63:e202315232. [PMID: 38059757 DOI: 10.1002/anie.202315232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
General methods for the preparation of geminal bis(boronates) are of great interest due to their widespread applications in organic synthesis. While the terminal gem-diboron compounds are readily accessible, the construction of the sterically encumbered, internal analogues has remained a prominent challenge. Herein, we report a formal umpolung strategy to access these valuable building blocks. The readily available 1,1-diborylalkanes were first converted into the corresponding α-halogenated derivatives, which then serve as electrophilic components, undergoing a formal substitution with a diverse array of nucleophiles to form a series of C-C, C-O, C-S, and C-N bonds. This protocol features good tolerance to steric hindrance and a wide variety of functional groups and heterocycles. Notably, this strategy can also be extended to the synthesis of diaryl and terminal gem-diboron compounds, therefore providing a general approach to various types of geminal bis(boronates).
Collapse
Affiliation(s)
- Peng-Fei Ning
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Yi Wei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Xin-Yi Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Yi-Fei Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Feng-Chen Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Kai Hong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
9
|
Zhang Z, Liu J, Gao S, Su B, Chen M. Highly Stereoselective Syntheses of α,α-Disubstituted ( E)- and ( Z)-Crotylboronates. J Org Chem 2023. [PMID: 36791418 DOI: 10.1021/acs.joc.2c02606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We report herein stereoselective syntheses of α,α-disubstituted (E)- and (Z)-crotylboronates. Starting from α-boryl (E)- or (Z)-crotylboronate, base-mediated alkylation occurred exclusively at the position α to the boryl groups to give targeted boronates while retaining the geometries of the alkenes in the starting crotylboronates. Under proper conditions, the resulting α,α-disubstituted crotylboronates underwent aldehyde addition to give allylated products with high stereoselectivities.
Collapse
Affiliation(s)
- Zheye Zhang
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Bo Su
- College of Pharmacy, State Key Laboratory of Medical Chemical Biology, Nankai University, Tianjin 300071, China
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
10
|
Li B, Liang H, Vignesh A, Zhou X, Liu Y, Ke Z. Updated Progress of the Copper-Catalyzed Borylative Functionalization of Unsaturated Molecules. Molecules 2023; 28:2252. [PMID: 36903497 PMCID: PMC10004982 DOI: 10.3390/molecules28052252] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Borylation has become a powerful method to synthesize organoboranes as versatile building blocks in organic synthesis, medicinal chemistry, and materials science. Copper-promoted borylation reactions are extremely attractive due to the low cost and non-toxicity of the copper catalyst, mild reaction conditions, good functional group tolerance, and convenience in chiral induction. In this review, we mainly updated recent advances (from 2020 to 2022) in the synthetic transformations in C=C/C≡C multiple bonds, and C=E multiple bonds mediated by copper boryl systems.
Collapse
Affiliation(s)
- Bingru Li
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Huayu Liang
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Arumugam Vignesh
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyu Zhou
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510275, China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
11
|
Dang Y, Jia C, Wang Y, Wang L, Li Y, Li Y. Synthesis and Characterization of Zinc, Lithium and Magnesium Complexes Containing Pyrrolyl Ligands, and Utilization as Catalysts in Borylation of Aryl Iodides and Hydroboration of Aldehydes and Ketones. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202211038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
12
|
1,6-Conjugate addition of para-quinone methides using gem-diborylcarbanions: Practical access to gem-diborylalkanes bearing vicinal tertiary/quaternary stereocenters. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
13
|
Liu W, Shen Z, Xu S. Synthesis of 1,1-Diboron Alkanes via Diborylation of Unactivated Primary C(sp 3)—H Bonds Enabled by AsPh 3/Iridium Catalysis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202111032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Liu J, Chen M. Highly stereoselective syntheses of ( E)-δ-boryl- anti-homoallylic alcohols via allylation with α-boryl-( E)-crotylboronate. Chem Commun (Camb) 2021; 57:10799-10802. [PMID: 34590625 DOI: 10.1039/d1cc04058h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly stereoselective synthesis of (E)-δ-boryl-anti-homoallylic alcohols is developed. In the presence of a Lewis acid, aldehyde allylation with α-boryl-(E)-crotylboronate gave δ-boryl-anti-homoallylic alcohols in good yields with excellent E-selectivity. The E-vinylboronate group in the products provides a useful handle for cross-coupling reactions as illustrated in the fragment synthesis of chaxamycins.
Collapse
Affiliation(s)
- Jiaming Liu
- Departments of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Ming Chen
- Departments of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
15
|
Xu N, Xu J, Zhu Q, Liu C. Synthesis of Allylboronates via Zweifel‐type Deprotonative Olefination. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nuo Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation & CAS Key Laboratory of Chemistry of Northwestern Plant Resources Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049
| | - Jianeng Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation & CAS Key Laboratory of Chemistry of Northwestern Plant Resources Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049
| | - Qing Zhu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation & CAS Key Laboratory of Chemistry of Northwestern Plant Resources Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation & CAS Key Laboratory of Chemistry of Northwestern Plant Resources Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| |
Collapse
|
16
|
Kim M, Lee JH, Cho SH. Pd‐Catalyzed Negishi Cross‐Coupling of Vinyl Bromides with Diborylmethylzinc Chloride. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Minjae Kim
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Jun Hee Lee
- Department of Advanced Materials Chemistry Dongguk University Gyeongju Campus Gyeongju 38066 Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| |
Collapse
|
17
|
Miura T, Oku N, Shiratori Y, Nagata Y, Murakami M. Stereo- and Enantioselective Synthesis of Propionate-Derived Trisubstituted Alkene Motifs. Chemistry 2021; 27:3861-3868. [PMID: 33277755 DOI: 10.1002/chem.202004930] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/03/2020] [Indexed: 12/14/2022]
Abstract
We report a new method for constructing propionate-derived trisubstituted alkene motifs in a stereoselective manner. 1-Substituted 1,1-di(pinacolatoboryl)-(E)-alk-2-enes are generated in situ from 1-substituted 1,1-di(pinacolatoboryl)alk-3-enes through ruthenium(II)-catalyzed double-bond transposition. These species undergo a chiral phosphoric acid catalyzed allylation reaction of aldehydes to produce the E isomers of anti-homoallylic alcohols. On the other hand, the corresponding Z isomers of anti-homoallylic alcohols are obtained when a dimeric palladium(I) complex is employed as the catalyst for this double-bond transposition. Thus, both E and Z isomers can be synthesized from the same starting materials. A B-C(sp2 ) bond remaining with the allylation product undergoes the Suzuki-Miyaura cross-coupling reaction to furnish a propionate-derived trisubstituted alkene motif in a stereo-defined form. The present method to construct the motifs with (E)- and (Z)-alkenes are successfully applied to the syntheses of (+)-isotrichostatic acid, (-)-isotrichostatin RK, and (+)-trichostatic acid, respectively.
Collapse
Affiliation(s)
- Tomoya Miura
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| | - Naoki Oku
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| | - Yota Shiratori
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| | - Yuuya Nagata
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto, 615-8510, Japan
| |
Collapse
|
18
|
Chen J, Chen M. Enantioselective Syntheses of ( Z)-6'-Boryl- anti-1,2-oxaborinan-3-enes via a Dienylboronate Protoboration and Asymmetric Allylation Reaction Sequence. Org Lett 2020; 22:7321-7326. [PMID: 32903009 DOI: 10.1021/acs.orglett.0c02657] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The enantioselective synthesis of 6'-boryl-anti-1,2-oxaborinan-3-enes is reported. A Cu-catalyzed highly stereoselective 1,4-protoboration of 1,1-bisboryl-1,3-butadiene is developed to generate (E)-α,δ-bisboryl-crotylboronate. The chiral phosphoric-acid-catalyzed asymmetric allylboration of aldehydes with the boron reagent produces 6'-boryl-anti-1,2-oxaborinan-3-enes with excellent Z-selectivities and enantioselectivities. The product contains a vinyl and alkyl boronate unit that can directly participate in a variety of subsequent transformations.
Collapse
Affiliation(s)
- Jichao Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
19
|
Liang MZ, Meek SJ. Synthesis of Quaternary Carbon Stereogenic Centers by Diastereoselective Conjugate Addition of Boron-Stabilized Allylic Nucleophiles to Enones. J Am Chem Soc 2020; 142:9925-9931. [PMID: 32408746 DOI: 10.1021/jacs.0c03900] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A method for the site-selective and diastereoselective conjugate addition of boron-stabilized allylic nucleophiles to α,β-unsaturated ketones is disclosed. Transformations involve easily prepared γ,γ-disubstituted allyldiboron reagents and proceed in the presence of a fluoride activator at 80 °C. Reactions proceed with a wide variety of enones and allyldiboron reagents efficiently to deliver ketone products that contain otherwise difficult-to-access vicinal β-tertiary and γ-quaternary carbon stereogenic centers and an alkenylboron moiety. The utility of the method is highlighted by several transformations, including cross-coupling and carbocyclizations.
Collapse
Affiliation(s)
- Michael Z Liang
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Simon J Meek
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|