1
|
Aich S, Saha M, Ghosh D, Molla SA, Sarkar AK, Bag D, Rahaman R, Khamarui S, Maiti DK. Ru(III)-PhI(OAc) 2─A Combination for Generation of Isocyanate Intermediate from Benzimidate through a Rearrangement: Synthesis of Unsymmetrical Urea, Carbamate, and Chiral Analogues. Org Lett 2024; 26:10970-10975. [PMID: 39632083 DOI: 10.1021/acs.orglett.4c04131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Ru(III)-PhI(OAc)2, an unprecedented combination, is a highly efficient reagent system for the in situ generation of a valuable isocyanate intermediate from benzimidate synthons through a rearrangement. It unlocks a powerful platform for forming diverse C-N bonds, enabling the one-pot synthesis of an expansive array of valuable unsymmetrical ureas, carbamates, and their chiral analogues toward complex molecular structures with high selectivity and excellent yields. This new strategy not only exemplifies efficiency but also serves as a versatile tool for the construction of valuable molecular architectures, enhancing the scope and impact of modern synthetic chemistry.
Collapse
Affiliation(s)
- Shobhon Aich
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Mriganka Saha
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Debasish Ghosh
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Sabir Ali Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Ankan Kumar Sarkar
- School of Material Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Debanjana Bag
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Rajjakfur Rahaman
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Saikat Khamarui
- Department of Chemistry, Government General Degree College at Kalna-1, Purba Bardhhaman-713405, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| |
Collapse
|
2
|
Pal S, Nandi R, Manna AS, Bag D, Rahaman R, Maiti DK. Cu(I)-Catalyzed C(sp 3)-H Functionalization of Amino Acids with Benzimidate and Reactive Oxygen Species (ROS) To Synthesize Triazines and 2-Pyrrolidinones. Org Lett 2024. [PMID: 39526848 DOI: 10.1021/acs.orglett.4c03536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An easily accessible Cu(I)-catalyzed regioselective oxidative C-N/C-O cross-coupling organic transformation has been disclosed for the syntheses of variably functionalized triazines and N-benzoylpyrrolidin-2-ones through the involvement of C(sp3)-H bond functionalization, which is unknown in the literature. This general synthetic method is extended for decarboxylative oxidation of amino acids to install carbonyl functionality. It facilitates the formation of 2-3 new bonds through the cross-coupling strategy involving benzimidates, amino acids, and in situ-generated reactive oxygen species (ROS) from the aerial O2 as the sole oxidant. The key utilities of the new reactions are demonstrated by its operational simplicity, regioselectivity, robustness, and broad substrate scope with high yields.
Collapse
Affiliation(s)
- Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Debanjana Bag
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Rajjakfur Rahaman
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| |
Collapse
|
3
|
Baidya R, Khamarui S, Molla SA, Pratihar P, Das P, Pati TK, Maiti DK. Ru II-Catalyzed C-H Activated Diverse Cyclization with Transformation of Substrate-DG to Functional Groups: Synthesis of Functionalized Indoles and Indenones. J Org Chem 2024; 89:14183-14196. [PMID: 39283992 DOI: 10.1021/acs.joc.4c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
We present an elegant and efficient method for Ru(II)-catalyzed C-H activation, followed by a diverse range of intermolecular cross-dehydrogenative coupling reactions. This process is facilitated by an intrinsic directing group (DG) and includes the in situ transformation of the DG into common and useful functional groups. Notably, this method avoids the installation and deinstallation of the directing group. Our approach enables the selective functionalization of benzimidate, coupled with the cyclization of o-alkynyl-aniline, resulting in the high-yield synthesis of diverse compounds such as indoles, and indenones. The sequential formation of C-N, C-C, and C-O bonds, followed by hydrolysis, underscores the versatile in situ transformation of the directing group. This work not only broadens the synthetic toolbox for constructing complex heterocyclic structures but also highlights the potential for sustainable and selective synthesis of valuable compounds.
Collapse
Affiliation(s)
- Ramlal Baidya
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Saikat Khamarui
- Department of Chemistry, Government General Degree College, Kalna-1, Burdwan 713405, India
| | - Sabir A Molla
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Pintu Pratihar
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Prasenjit Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Tanmay K Pati
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180-3522, United States
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
4
|
Manna AS, Nandi R, Ghosh T, Pal S, Rahaman R, Maiti DK. Organic Base-Promoted C-N- and C-O-Coupled Domino Cyclization Strategy: Syntheses of Oxazine-6-ones and 4-Pyrimidinols. J Org Chem 2024; 89:5650-5664. [PMID: 38577786 DOI: 10.1021/acs.joc.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Oxazine-6-one and 4-pyrimidinol are two important frameworks in pharmaceutical production. Herein, we disclosed a simple, efficient, inexpensive organic base-promoted and additive-stimulated protocol for the syntheses of variably functionalized oxazine-6-ones and 4-pyrimidinols employing acetonitrile solvent under conventional heating conditions using an oil bath through C-N and C-O coupled domino steps. This simple practicable productive protocol utilizes easily producible cheap precursors, namely, benzimidates or benzamidines, with differently substituted dicyano-olefins, and it comprises step economy, robustness, and moisture insensitive conditions affording high yield that avoids the use of transition-metal catalysts, multistep with multicomponent strategy, and harsh reaction conditions involving hazardous chemicals. This method is scalable into gram-scale production with good yield.
Collapse
Affiliation(s)
- Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Tanmoy Ghosh
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Rajjakfur Rahaman
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
5
|
Pal S, Nandi R, Manna AS, Aich S, Maiti DK. Cu I-Catalyzed Radical Reaction of Benzimidates to Form Valuable 4,5-Dihydrooxazoles through Regioselective Aerobic Oxidative Cross-Coupling. J Org Chem 2024; 89:2703-2717. [PMID: 38295826 DOI: 10.1021/acs.joc.3c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A straightforward Cu(I)-catalyzed oxidative cross-coupled organic transformation has been developed under mild conditions for the construction of functionalized 4,5-dihydrooxazoles through a four-bond-forming regiocontrolled C-C/C-N/C-O coupling strategy emerging benzimidates, paraformaldehyde, and 1,3-diketo analogues using eco-friendly O2 as the sole oxidant. The fundamental features of these designed approaches involve operational simplicity, selectivity, generality, and a broad substrate scope with high yields under the same reaction conditions.
Collapse
Affiliation(s)
- Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Shobhon Aich
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
6
|
Aich S, Nandi R, Chatterjee N, Gayen KS, Pal S, Maiti DK. Catalytic I 2-moist DMSO-mediated synthesis of valuable α-amidohydroxyketones and unsymmetrical gem-bisamides from benzimidates. Org Biomol Chem 2023; 21:2524-2530. [PMID: 36876635 DOI: 10.1039/d3ob00165b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
We developed an efficient and straightforward I2-catalyzed strategy for the synthesis of functionalized α-amidohydroxyketones and symmetrical and unsymmetrical bisamides using incipient benzimidate scaffolds as starting materials and moist-DMSO as a reagent and solvent. The developed method proceeds through chemoselective intermolecular N-C-bond formation of benzimidates and the α-C(sp3)-H bond of acetophenone moieties. The key advantages of these design approaches include broad substrate scope and moderate yields. High-resolution mass spectrometry of the reaction progress and labeling experiments provided suitable evidence regarding the possible mechanism. 1H nuclear magnetic resonance titration revealed notable interaction between the synthesized α-amidohydroxyketones and some anions as well as biologically important molecules, which revealed a promising recognition property of these valuable motifs.
Collapse
Affiliation(s)
- Shobhon Aich
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| | - Nirbhik Chatterjee
- Department of Chemistry, Kanchrapara College, North 24 parganas-743145, India
| | | | - Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India.
| |
Collapse
|
7
|
Sushmita, Patel M, Thakur D, Verma AK. Copper iodide nanoparticles (CuI NPs): an efficient catalyst for the synthesis of alkynyl esters. Org Biomol Chem 2023; 21:2301-2306. [PMID: 36853264 DOI: 10.1039/d3ob00157a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
An environmentally benign protocol for the synthesis of alkynyl esters, by the cross-coupling of diazoacetate with various substituted alkynes under neat reaction conditions, has been described. Copper iodide nanoparticles (CuI NPs) were found to promote the Sonogashira-type coupling to afford the corresponding alkynyl esters in good yields. The CuI nanoparticles were characterized by PXRD, FESEM, EDAX, and Raman techniques. The developed methodology has several advantages such as a broad substrate scope, less reaction time, atom economy, avoidance of an additive/base/solvent, and enhanced values of green chemistry. The catalyst was recycled up to threefold without the loss of its catalytic activity.
Collapse
Affiliation(s)
- Sushmita
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India. .,Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-3, Delhi-110078, India
| | - Monika Patel
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Deepika Thakur
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Akhilesh K Verma
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
8
|
Tian Y, Wu F, Jia S, Gong X, Mao H, Wang P, Qin W, Yan H. Organocatalytic Asymmetric Construction of Tetrasubstituted Carbon Stereocenters Bearing Three Heteroatoms via Intramolecular Cyclization of Vinylidene ortho-Quinone Methide with Imidates. Org Lett 2022; 24:5073-5077. [PMID: 35819168 DOI: 10.1021/acs.orglett.2c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein an organocatalytic asymmetric protocol for the construction of tetrasubstituted carbon stereocenters bearing three heteroatoms. The reaction proceeded via the enantioselective intramolecular cyclization reaction of vinylidene ortho-quinone methide (VQM) with imidates to form pentacyclic heterocycles. The formed tetrasubstituted carbon center was stable under a high temperature and the conditions for further transformations.
Collapse
Affiliation(s)
- Yuhong Tian
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Fengdi Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Shiqi Jia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xiangnan Gong
- Analytical and Testing Center of Chongqing University, Chongqing University, Chongqing 401331, P. R. China
| | - Hui Mao
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang 321007, P. R. China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
9
|
Rather IA, Ali R. Investigating the Role of Natural Deep Eutectic Low Melting Mixtures for the Synthesis of Symmetrical Bisamides. ChemistrySelect 2021. [DOI: 10.1002/slct.202103104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ishfaq Ahmad Rather
- Organic and Supramolecular Functional Materials Research Laboratory Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| |
Collapse
|
10
|
Kamble OS, Khatravath M, Dandela R. Applications of Ethynylanilines as Substrates for Construction of Indoles and Indole‐Substituted Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Omkar S. Kamble
- Department of Industrial and Engineering Chemistry Institute of Chemical Technology Indian oil Odisha Campus, Kharagpur extension Centre, Mouza, Samantpuri Bhubaneswar 751013 Odisha India
| | - Mahender Khatravath
- Department of Chemistry Central university of South Bihar, Gaya SH-7, Panchanpur Road, Karhara, Post Fatehpur, Gaya Bihar 824236 India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry Institute of Chemical Technology Indian oil Odisha Campus, Kharagpur extension Centre, Mouza, Samantpuri Bhubaneswar 751013 Odisha India
| |
Collapse
|
11
|
Affiliation(s)
- Sayantika Bhakta
- Department of Applied Sciences Maulana Abul Kalam Azad University of Technology, West Bengal Simhat, Haringhata 741249 Nadia, West Bengal India
| | - Tapas Ghosh
- Department of Applied Sciences Maulana Abul Kalam Azad University of Technology, West Bengal Simhat, Haringhata 741249 Nadia, West Bengal India
| |
Collapse
|
12
|
López R, Palomo C. N,N-Diacylaminals as Emerging Tools in Synthesis: From Peptidomimetics to Asymmetric Catalysis. Chemistry 2021; 27:20-29. [PMID: 32667706 DOI: 10.1002/chem.202002637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/12/2020] [Indexed: 12/26/2022]
Abstract
N,N-Diacylaminals are flexible molecular scaffolds that have commonly been utilized as amide surrogates in peptidomimetics. The singularities of this motif as an N-acyl imine equivalent and as hydrogen-bond donor have recently opened new synthetic opportunities, especially in the field of asymmetric catalysis. This concept article highlights this diverse synthetic potential and provides the elements necessary for further developments.
Collapse
Affiliation(s)
- Rosa López
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco (UPV/EHU), Manuel de Lardizabal 3, 20018, San Sebastián, Spain
| | - Claudio Palomo
- Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco (UPV/EHU), Manuel de Lardizabal 3, 20018, San Sebastián, Spain
| |
Collapse
|
13
|
Kumar P, Gupta P, Sharma C. Surface modified novel magnetically tuned halloysite functionalized sulfonic acid: synthesis, characterization and catalytic activity. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00285f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present work demonstrates the synthesis of magnetically tuned halloysite solid acid, the physiochemical properties of which are thoroughly studied using different characterization techniques and has been successfully used for the synthesis of bisamides and 4H-pyrans.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry and Chemical Sciences
- Central University of Jammu
- Jammu-181143
- India
| | - Princy Gupta
- Department of Chemistry and Chemical Sciences
- Central University of Jammu
- Jammu-181143
- India
| | | |
Collapse
|