1
|
Li H, Zhang Y, Han F, Zhang Z, Yin M, Han P, Jing L. Photoredox Catalyzed Tandem Denitrogenative [4 + 2] Annulation of 1,2,3-Benzotriazin-4(3H)-ones with Terminal Olefins. J Org Chem 2024; 89:16043-16048. [PMID: 39402890 DOI: 10.1021/acs.joc.4c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The dihydroisoquinolones skeleton is ubiquitous in natural products and biological molecules. Reported strategies for constructing dihydroisoquinolones usually require noble metal catalysts or stoichiometric oxidants, which limit their wide applications. Herein, we developed a photoredox catalyzed tandem denitrogenative [4 + 2] annulation reaction of 1,2,3-benzotriazin-4(3H)-ones with terminal olefins. A variety of dihydroisoquinolones can be accessed in moderate to excellent yield. This protocol features high atom-economy, mild reaction conditions, and is external oxidant-free, enabling the synthesis of various substituted dihydroisoquinolones.
Collapse
Affiliation(s)
- Haiqiong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
- Panzhihua No. 3 Senior High School, Panzhihua 617000, P. R. China
| | - Yu Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Fen Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Zhengbing Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Mengyun Yin
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| |
Collapse
|
2
|
Huang PF, Fu JL, Peng Y, Tang KW, Liu Y. Electrochemical Oxidative (4 + 2) Cyclization of Anilines and o-Phenylenediamines for the Synthesis of Phenazines. Org Lett 2024; 26:3756-3761. [PMID: 38678581 DOI: 10.1021/acs.orglett.4c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Phenazines, crucial constituents of nitrogen-containing heterocycles, widely exist in functional compounds. Herein, we report an anodic oxidative (4 + 2) cyclization between anilines and o-phenylenediamines for the uniform construction of phenazines in a simple undivided cell. Dual C-H amination followed by oxidation represents an outstanding step and atom efficiency. A sequence of phenazines is produced with excellent functional group tolerance at room temperature.
Collapse
Affiliation(s)
- Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jia-Le Fu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ying Peng
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
3
|
Wu H, Gui J, Sun M, Ma Y, Yang J, Wang Z. Palladium-Catalyzed C-H Allylation/Annulation Reaction of Amides and Allylic Alcohols: Regioselective Construction of Vinyl-Substituted 3,4-Dihydroisoquinolones. J Org Chem 2023; 88:3871-3882. [PMID: 36864592 DOI: 10.1021/acs.joc.3c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A palladium-catalyzed highly regioselective C-H allylation/annulation reaction of N-sulfonyl amides with secondary or tertiary allylic alcohols has been developed to construct 3,4-dihydroisoquinolones bearing a synthetically valuable vinyl substituent. This cascade cyclization approach of allylic alcohols involving C-H allylation has not been reported previously. The commercially available allylic alcohol substrates, the only by-product of water, and the used terminal oxidant of O2 provide environmentally benign advantages.
Collapse
Affiliation(s)
- Haijian Wu
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Jing Gui
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Manman Sun
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Yongmin Ma
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| |
Collapse
|
4
|
CuxPd1-xO nanoparticle-reduced graphene oxide nanocomposite catalyzed direct ortho-C–H acylation of 2-aryl pyridines. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2022.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
5
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
6
|
Logeswaran R, Jeganmohan M. Transition‐Metal‐Catalyzed, Chelation‐Assisted C−H Alkenylation and Allylation of Organic Molecules with Unactivated Alkenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Lu N, Liang H, Miao C, Lan X, Qian P. Theoretical investigation of the mechanism of DMAP-promoted [4 + 2]-annulation of prop-2-ynylsulfonium with isatoic anhydride. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism for DMAP-promoted [4 + 2]-annulation of prop-2-ynylsulfonium with isatoic anhydride is investigated using the M06-2X functional. The reaction comprises isomerization of prop-2-ynylsulfonium in stage 1. Stage 2 includes DMAP-promoted deprotonation, nucleophilic addition, ring opening, and decarboxylation. Three steps of intramolecular cycloaddition, DMAP-promoted protonation, and dealkylation occur in stage 3, generating methylated DMAP and neutral thioether, which undergo double-bond isomerization to yield 3-methylthio-4-quinolone. The ability of DMAP to promote the reaction lies in the barrier decrease for alkyne isomerization, deprotonation/protonation of allenes, and dealkylation as effective bases for transferring protons and methyl groups. The roles of prop-2-ynylsulfonium and isatoic anhydride were demonstrated to be C2 and C4 synthons via Multiwfn analysis on the frontier molecular orbital. An alternative path was also confirmed by the Mayer bond order of the vital transition states.
Collapse
Affiliation(s)
- Nan Lu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian City, Shandong Prov. 271018, P.R. China
- College of Chemistry and Material Science, Shandong Agricultural University, Taian City, Shandong Prov. 271018, P.R. China
| | - Hui Liang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian City, Shandong Prov. 271018, P.R. China
- College of Chemistry and Material Science, Shandong Agricultural University, Taian City, Shandong Prov. 271018, P.R. China
| | - Chengxia Miao
- College of Chemistry and Material Science, Shandong Agricultural University, Taian City, Shandong Prov. 271018, P.R. China
- College of Chemistry and Material Science, Shandong Agricultural University, Taian City, Shandong Prov. 271018, P.R. China
| | - Xiaozheng Lan
- College of Chemistry and Material Science, Shandong Agricultural University, Taian City, Shandong Prov. 271018, P.R. China
- College of Chemistry and Material Science, Shandong Agricultural University, Taian City, Shandong Prov. 271018, P.R. China
| | - Ping Qian
- College of Chemistry and Material Science, Shandong Agricultural University, Taian City, Shandong Prov. 271018, P.R. China
- College of Chemistry and Material Science, Shandong Agricultural University, Taian City, Shandong Prov. 271018, P.R. China
| |
Collapse
|
8
|
Gui J, Sun M, Wu H, Li J, Yang J, Wang Z. Direct benzylic C–H difluoroalkylation with difluoroenoxysilanes by transition metal-free photoredox catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light promoted direct benzylic C–H difluoroalkylation with difluoroenoxysilanes catalyzed by Na2-eosin Y via a HAT-ORPC pathway has been developed, providing an efficient and atom-economic method for production of α-benzyl-α,α-difluoroketones.
Collapse
Affiliation(s)
- Jing Gui
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Haijian Wu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Jinshan Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Jianguo Yang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Zhiming Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| |
Collapse
|
9
|
Liu J, Xiao X, Lai Y, Zhang Z. Recent advances in transition metal-catalyzed heteroannulative difunctionalization of alkenes via C-H activation for the synthesis of heterocycles. Org Chem Front 2022. [DOI: 10.1039/d2qo00081d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterocyclic compounds are the fundamental structural motifs distributed in natural products, pharmaceuticals and biologically active compounds. Thus, there is increasing interest in the development of novel synthetic strategies for the...
Collapse
|
10
|
Yin C, Zhong T, Zheng X, Li L, Zhou J, Yu C. Direct synthesis of indazole derivatives via Rh(III)-catalyzed C-H activation of phthalazinones and allenes. Org Biomol Chem 2021; 19:7701-7705. [PMID: 34524333 DOI: 10.1039/d1ob01458g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Rh(III)-catalyzed annulation of phthalazinones or pyridazinones with various allenes was developed, leading to the formation of indazole derivatives bearing a quaternary carbon in moderate to good yields. The targeted products were synthesized via sequential C-H activation and olefin insertion, followed by β-hydride elimination and intramolecular cyclization. The synthetic protocol proceeded efficiently with broad functional group tolerance, high atom efficiency and high Z-selectivity. The practicability of this method was proved by synthetic transformation.
Collapse
Affiliation(s)
- Chuanliu Yin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiangyun Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Lianghao Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jian Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
11
|
Fu L, Liu Y, Wan JP. Pd-Catalyzed Triple-Fold C(sp 2)-H Activation with Enaminones and Alkenes for Pyrrole Synthesis via Hydrogen Evolution. Org Lett 2021; 23:4363-4367. [PMID: 34013729 DOI: 10.1021/acs.orglett.1c01301] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The synthesis of NH-free pyrroles via Pd-catalyzed annulation of enaminones and alkenes is reported. With the catalysis of Pd(II), the activation of triple C(sp2)-H bonds, including one internal C(sp2)-H bond in enaminone, has been activated to provide various pyrroles. The interesting evolution of hydrogen gas from the reactions has been observed by a hydrogen detector.
Collapse
Affiliation(s)
- Leiqing Fu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.,College of Chemistry and Bio-Engineering, Yichun University, Yichun, Jiangxi 336000, P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
12
|
Zhong R, Xu Y, Sun M, Wang Y. Palladium-Catalyzed Regioselective C-H Functionalization/Annulation Reaction of Amides and Allylbenzenes for the Synthesis of Isoquinolinones and Pyridinones. J Org Chem 2021; 86:5255-5264. [PMID: 33750119 DOI: 10.1021/acs.joc.1c00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A regioselective C-H functionalization/annulation reaction of N-sulfonyl amides and allylbenzenes through a palladium-catalyzed C(sp2)-H allylation/aminopalladation/β-H elimination/isomerization sequence has been reported. Various aryl and alkenyl carboxamides are found to be efficient substrates to construct isoquinolinones and pyridinones in up to 96% yield. Using ambient air as the terminal oxidant is another advantage regarding environmental friendliness and operational simplicity.
Collapse
Affiliation(s)
- Rong Zhong
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Yong Xu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Yurong Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| |
Collapse
|
13
|
Panda P, Pal K, Chakroborty S. Robust molecular trends in Pd-catalyzed C(sp2/sp3)-H activation reactions – A review. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
14
|
Zhang Y, Li X, Bai J, Huang Z, Yin M, Sheng J, Song Y. Rh( iii)-Catalyzed C–H allylation/annulative Markovnikov addition with 5-methylene-1,3-dioxan-2-one: formation of isoquinolinones containing a C3 quaternary centre. Org Chem Front 2021. [DOI: 10.1039/d1qo01232k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rh(iii)-Catalyzed C–H allylation/annulative Markovnikov addition reaction was disclosed, offering isoquinolinones containing a C3 quaternary centre. By using this method as the key step, the US28 inverse agonist analogs were synthesized.
Collapse
Affiliation(s)
- Yuanfei Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xinghua Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Jintong Bai
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Zhaoyu Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Minhai Yin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Jiarong Sheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Ying Song
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
15
|
Sun M, Chen W, Wu H, Xia X, Yang J, Wang L, Shen G, Wang Z. Vinylogous Elimination/C-H Functionalization/Allylation Cascade Reaction of Allenoate Adducts: Synthesis of Ring-Fused Dihydropyridinones. Org Lett 2020; 22:8313-8319. [PMID: 33044826 DOI: 10.1021/acs.orglett.0c02956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A palladium-catalyzed cascade reaction of β'-allenoate adducts with aryl/heteroaryl carboxamides through a vinylogous elimination/C-H functionalization/intramolecular allylation reaction sequence has been developed with high Z stereoselectivity. Various ring-fused dihydropyridinones bearing an α,β-unsaturated ester substituent are obtained. It is the first example of application of the allenoate adducts to C-H functionalization annulations as practical precursors of hard-to-get functionalized electron-deficient 1,3-butadienes. Using air as the terminal oxidant also shows a great advantage in environmental friendliness.
Collapse
Affiliation(s)
- Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Weida Chen
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Haijian Wu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Xiangyu Xia
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Guodong Shen
- School of Chemistry and Chemical Engineering, School of Pharmacy, Liaocheng University, Liaocheng 252000, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| |
Collapse
|